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Abstract. The only part of the Long Term Evolution (LTE) security
standard that has been formally analyzed is the Authentication and Key
Agreement (AKA) procedure. It is not clear how well existing security
related verification tools can handle other types of procedures. In this
work, we use ProVerif to analyze the procedures related to session man-
agement and mobility. Our analysis has shown that most of the secrecy
and agreement properties hold which was expected. However, we had
difficulties proving stronger injective agreement properties.
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1 Introduction

Background. Long Term Evolution (LTE), a 4th Generation (4G) mobile com-
munication system, is the most recent standard developed by the 3rd Genera-
tion Partnership Project (3GPP) [1]. Among the objectives of LTE is to provide
higher data rates, enhanced quality of service and equal or better security com-
pared to previous generations [1] (TS 22.278). One such improvement is that
LTE introduces very granular key separation. LTE mandates the use of different
session keys for specific protocols and purposes between the terminal and the
nodes in the network. Those keys are organized in a hierarchy (see Fig. 1b). At
the root of the hierarchy is a key that is shared between the Home Subscriber
Server (HSS) (see Fig. 1a) and the terminal, or User Equipment (UE) in the
3GPP specifications, where it is securely kept in a smartcard. During initial
attachment of the UE to the network, mutual authentication between them is
achieved by running the Authentication and Key Agreement protocol (AKA) [1]
(TS 33.401). The authentication is based on the root key. The other keys are
subsequently derived from keys that are closer to the root in the hierarchy than
themselves.

Each key in the hierarchy is shared between the UE and a particular node in
the network. For example the Kasyg key is shared with the Mobility Manage-
ment Entity (MME); the Kenpg key is shared with the Evolved Node B (eNB).
The LTE standard defines specific procedures for the establishment of each key.
For instance, the Kagmg key is established by the AKA protocol which runs



between the UE and the HSS, and then provisioned to the target MME node.
The Keng is initially established by a combination of procedures involving the
MME, eNB, and the UE. The UE and MME use the Kasmg to agree on a Kong.
The MME then provides this key to the eNB which finally activates the security
between the UE and the eNB based on the Kenp. Key establishment procedures
like these typically have to satisfy at least the following security properties: agree-
ment, secrecy and freshness. Agreement is the property that guarantees that the
involved parties obtain the same key at the end of the run; otherwise, the key
would be useless. Secrecy guarantees that no one, other that the involved parties
(who are assumed to not leak the key to outsiders), has the key. If secrecy is
not guaranteed, confidentiality protection, among other cryptographically based
services, is not achievable. The last property of freshness prevents key re-use and
thus, for example, situations were a plain text is encrypted twice using the same

key.
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Fig. 1: LTE overview

In a running system, the key establishment procedures and procedures mak-
ing use of the keys can be interleaved, repeated and run simultaneously by several
UEs and network nodes. They can as well be used as building blocks in more
complex compound procedures such as the ones handling mobility. The secu-
rity procedures are dependent on each other. For instance, the establishment
of a Kenp key requires the existence of a Kasmg key and thus any procedure
using the K¢np cannot be executed in a pure LTE system unless an AKA run
has taken place earlier. The procedures might also rely on other type of con-
text information, such as message counters and global parameters of the system.
State-based formal verification tools like SPIN [18] can model this context infor-
mation and capture the effect of reruns and interleaving. However state-based



approaches are not effective to model cryptographic functions that usually rely
on advanced computations. Other symbolic approaches that abstract away the
implementation details of cryptographic primitives have been more effective. In
general, formal analysis of security protocols is usually done against the symbolic
Dolev-Yao intruder (or attacker) model [16]. In this model, the attacker has full
control of the communication medium. In addition, cryptography is assumed
perfect so that the attacker cannot decrypt messages unless he has the required
key, hash functions are collision free, etc.

Contribution. In this paper, we present our work with ProVerif [8] which we
used to model and verify security properties of different key establishment pro-
cedures in LTE. This work is part of a feasibility study whose aim is to bring
and put to use tools like ProVerif in an industrial context such as that of the
3GPP standardization process. Our main contribution consists in providing for-
mal models of the LTE protocols in the input language of the ProVerif. Our
implementation preserves the trust model of 3GPP. Furthermore, to the best of
our knowledge, the security procedures related to mobility and session manage-
ment have not been previously subject to formal analysis. Another contribution
consists in showing how to model and verify different security properties. Our
analysis results confirm all secrecy and most of the weak agreement properties.
However, stronger agreement properties are more challenging to prove, for several
reasons that we later discuss and explain. Our analysis approach using ProVerif
is simple and generic and thus can be easily adapted to other case studies.

Related Work. Although LTE security has received much scrutiny during the
design process, it has been less studied in the research community. In particular,
the research community has mainly focused on analyzing AKA [29,28,17,30],
which is largely the same authentication and key agreement protocol used for
Wideband Code Division Multiplex Access (WCDMA), a 3G access. AKA as
used in WCDMA was formally analyzed using BAN logic in [1] (TS 33.902).
AKA is re-used exactly as is in LTE to boot strap the key hierarchy. Therefore,
all analysis results on AKA as used in WCDMA carries over to LTE. A study
of privacy aspects of WCDMA is presented in [5]. Although it does not study
LTE, it looks at other procedures than AKA, namely the paging procedure. The
study in [24] contains an analysis of a proposed, but not standardized, system for
handovers between different types of radio access systems. It does not provide
any analysis of LTE itself.

Research on formal verification of security protocols has been ongoing for
two decades. Current state of the art tools like Scyther [13] and ProVerif can
verify protocols for unbounded number of sessions and agents. Case studies by
Scyther include the analysis of the Naxos protocol [14] and the IPsec exchange
protocols IKEv1 and IKEv2 [15]. Other applications include the analysis of the
privacy and key management protocol [27] and the handover schemes [26] in
WiMAX networks. Case studies by ProVerif include the analysis the Bluetooth
device pairing protocol [19], the just-fast-keying protocol [3], a secure file sharing
protocol [9], authentication in 3G where both GSM and WCDMA access is



used [28], and the privacy study on WCDMA mentioned earlier [5]. We note
that [28] does not contain any analysis of mobility between radio access networks,
but rather considers the case of authentication over the GSM/EDGE access
network, when used to access a 3G network. There is a long list of similar tools
from which we cite the following ones: The Tamarin tool [23] has been used for
the verification of group key agreement protocols [25]. The AVISPA [6] has been
used for the analysis of key management in hierarchical group protocols [12].
Other relevant tools are NRL [22], LySa [11] and Casper [21].

Outline. In the next section, we give an overview of the LTE architecture to put
in context the protocol models we provide. In Section 3, we describe ProVerif
and use AKA as an example illustrating our modeling approach. In Section 4,
we describe the security procedures related to session management, provide the
corresponding formal models and discuss the verification results. In Section 5, we
present our work on security procedures in mobility events. Finally in Section 6,
we conclude by a summary discussions and future work. For shortage of space,
the full versions of the models that can be used to reproduce our results are
not included. They are available on demand. In the description of the LTE
procedures, many aspects not related to security have been omitted and thus we
refer to [1] for the detailed specifications.

2 Overview of LTE

LTE provides 4G mobile broadband access service to terminals. More precisely,
the service consists of providing a terminal with IP connectivity using a stable
IP address, while the terminal moves throughout the LTE network.

2.1 Architecture

LTE [1] (TS 23.401) consists of a Radio Access Network (RAN) and a core net-
work (see Fig. 1a). The radio access network consists of a set of base stations,
the eNBs. The terminals connect to the eNB via the radio air interface. The
eNB is connected to two nodes in the core network: the MME and the Serv-
ing Gateway (S-GW). The first node (MME) handles the control plane traffic
for mobile terminals connected to the eNB. The control plane for a terminal is
used to manage the terminal sessions, mobility and security. The second node
(S-GW) handles the user plane traffic to and from the internet, and other opera-
tor services. Subscriber information such as authentication credentials, location,
subscription preferences, etc. is kept in the HSS.

2.2 Trust Model

During the security design in 3GPP a trust model for the network is assumed.
More precisely, the network is divided into two main types of trust domains:
the core network trust domain, and the RAN one. The standards have a more



granular concept of trust domains, but these two are sufficient for the proto-
cols considered in this paper. The data traffic flows between nodes in different
domains over an IP transport network.

The core network domain, which contains nodes like the HSS, MME, S-GW,
etc. is assumed to be a physically secure one. This means that attackers do not
have access to nodes in this domain other than what can be obtained remotely
via the network interfaces of the nodes.

The RAN trust domain contains only the eNBs. Since such nodes may be
deployed in physically insecure locations, such as on the wall of a shopping
mall, or in a hotel corridor, etc. the security model in LTE is built to handle the
situation where the eNBs are deployed in untrusted locations. In the standard [1]
(TS 33.401), it is required that each eNB implements its security processing
inside a secure environment. The purpose is to prevent attackers to gain access
to any data in the eNB by physically tampering with the device. Furthermore,
the IP transport network that connects nodes across different domains is to be
protected using IPsec [1] (TS 33.210) unless it can be trusted.

2.3 Session and Mobility Management

The terminal maintains two control connections with the network, one with the
MME managed by the Non Access Stratum (NAS) protocol, and one with the
eNB managed using the Radio Resource Control (RRC) protocol. The MME
keeps track of the terminal location even when it is idle, i.e., it is not exchanging
user plane data. The location is defined by an area served by possibly several
eNBs. The terminal keeps the MME updated of any area changes as it moves.

In case of incoming data, the MME pages the terminal on all eNBs in its last
known area. In response to the paging, the terminal requests a user plane data
connection from the MME. It is only then that the eNB, which the terminal uses
to access the network, becomes aware of the terminal presence. The MME pro-
vides the eNB with initial state information to communicate with the terminal.
The terminal can then become active sending and receiving data. Afterwards, it
can become idle again. In such case, the serving eNB releases all the associated
resources and is no longer aware of the terminal’s presence.

2.4 Key Hierarchy

Once security is activated, the NAS protocol between the terminal and the MME
becomes both integrity protected and encrypted. The same holds for the RRC
protocol between the terminal and the eNB. The user plane traffic is encrypted
in two hops. First the radio link between the terminal and the eNB is encrypted.
The eNB terminates the encryption of uplink traffic inside its secure environment
and forwards it to the S-GW through an IPsec tunnel. Downlink traffic is handled
in a similar manner.

Security for NAS, RRC and user plane traffic relies on separate encryption
and integrity session keys (see Fig. 1b). The keys for protecting RRC and user



plane traffic are derived from the Kong which in turn, is derived from the Kasug.
The keys for the NAS protocol are also derived from the Kasug key.

2.5 Initial Key Establishment

At start up, the terminal needs to register with the network. This is achieved by
the attach procedure. In connection to the attach procedure, the terminal and
network also run an AKA procedure. The outcome of AKA is the establishment
of the Kagumy session key between the terminal and the serving MME.

Figure 2 contains a simplified chart of the message exchange related to AKA
and that we briefly explain as follows: First, the UE sends its identifier IMSI and
security capabilities to the MME in an attach request. The MME then stores the
capabilities and forwards the IMSI to the HSS. The HSS uses the identifier to
retrieve the secret subscriber key K, generates a nonce RAND and computes the
Kasumr key together with other authentication parameters. The authentication
data is then sent to the MME which uses it to authenticate the UE.

= UE (((9())) eNB MME HSS
ATT: IMSI,UE,gs ADQ: IMSI
é
< ACH: RAND,AUTN ADR: RAND,XRES,Kasme, AUTN
> ATT: Attach Request
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8 L [SM: cksi, UBaigs ,NASalgs] ADR: Authentication Data Response
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Z ARE: Authentication Response
{{NsR]} > NSM: NAS Security Mode Command
o < NSC: NAS Security Mode Complete
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RSM: RRC Security Mode Command
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Fig.2: AKA, NAS security control and service request procedures



3 ProVerif Overview

Before we present our work with the security procedures, we first describe
ProVerif, the tool we use. We will be using AKA as a supporting example to
show how protocols can be modeled and analyzed with it.

3.1 ProVerif

The tool takes formal models of the protocols together with a set of security
properties as input. The input language is a typed variant of the applied pi
calculus [4]. In this language, messages are modeled as terms. Relationships
between cryptographic primitives are captured by rewrite rules or an equational
theory. The complete specification can be found in the user manual [10].

ProVerif can prove reachability properties and correspondence assertions [7].
Reachability properties allow checking which information is in the possession of
the attacker, i.e. secrecy. Correspondence properties are of the form “if some
event is executed, then another event has previously been executed”, and can
be used for checking various types of authentication [20].

3.2 Input Language

Figure 3 shows an AKA model in the ProVerif language. In general, a protocol
model can be divided in three parts: the declarations (lines 1-9), the process
macros (10-31) and the main process (32). The declarations include the user
types, the functions that describe the cryptographic primitives, and the secu-
rity properties. The process macros consist of sub-process definitions. Each sub-
process is a sequence of events. Finally, the main process is defined using those
macros. In this particular example, it is defined as the parallel composition (de-
noted by |) of the unbounded replication (denoted by !) of three process macros
representing a UE (line 10), an MME (18) and an HSS (24) node.

Declarations. Besides the built-in types: channel, bitstring and bool; addi-
tional user types can be declared as in line 2. Free names are introduced as in
line 1 where two channels with names pubch and secch are declared. Free names
are by default accessible to the attacker unless qualified by [secret]. In the ex-
ample, the private channel is used for secure communication such as within a
trusted domain or over an IPsec tunnel.

Constructors are functions used to build terms. They are declared by spec-
ifying their names, the types of the arguments and the return value (see lines
4-7). By default, functions are one-way; that is, the attacker cannot derive the
arguments from the return value, unless qualified by [data] . Destructors (line
8) are special functions that are used to manipulate terms. Combined together,
constructors and destructors are used to capture the relationship between cryp-
tographic primitives. In the model of Fig. 3, the first three declared functions are
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free pubch: channel. free secch: channel [private].
type key. type id. type msgheader.
const ATT, ADR, ADQ, ACH, ARE: msgheader.
fun kdf(bitstring , key): key.
fun autn(bitstring , key): bitstring.
fun res(bitstring , key): bitstring.
fun senc(bitstring , key): bitstring.
reduc forall x: bitstring , y: key; sdec(senc(x, y), y) = x.
table db(id, key).
let UE() =
new imsi: id; new k: key;(x key provisionning x)
insert db(imsi, k); (% key activation x)
out (pubch, (ATT, imsi));(x attach request x)
in(pubch, (=ACH, r: bitstring , a: bitstring));
if a = autn(r, k) then
let kasme: key = kdf(r, k) in
out(pubch, (ARE, res(r, k))).(* authentication response x)
let MME() =
in (pubch, (=ATT, imsi: id));
out(secch, (ADQ, imsi));(x authentication data request x)
in(secch, (=ADR, kasme: key, a: bitstring , xr: bitstring , n: bitstring));
out(pubch, (ACH, n, a));(x authentication request x)
in(pubch, (=ARE, =xr)).
let HSS() =
in(secch, (=ADQ, imsi: id));(x authentication data request x)
new n: bitstring;
get db(=imsi, k: key) in
let kasme: key = kdf(n, k) in
let a: bitstring = autn(n, k) in
let r: bitstring = res(n, k) in
out(secch, (ADR, kasme, a, r, n)).(x authentication data response x)
process ((1UE()) | (IMME()) | ('HSS()))

Fig. 3: AKA model

used to derive the authentication parameters in the HSS process (lines 28-30).
The last two are used to model a shared key encryption and decryption scheme.

Constants (line 3) are O-arity functions that together with types can be used
to improve the clarity of the model and can help reducing the number of valid
traces during the analysis. This is also common behavior of implementations,
i.e., a protocol implementation typically reject messages of unexpected types. In
addition, we use the constants to identify the different exchanged messages so
that they can be easily mapped in the corresponding chart (Fig. 2).

The language provides support for tables for persistent storage. In line 9, a
table modeling the subscriber database is declared. Lines 11-12 model the process
of registering a new subscriber; and line 27 models the process of retrieving the
pre-shared secret key of a subscriber (variable k) given its identity (imsi).

Process Macros. Messages are represented by terms. A term can be a name,
a variable, a tuple of terms, a constructor or destructor application. In addition,
the language has support for some common Boolean functions (=, &&;, ||, <>)
that use the infix notation. Pattern matching is used for term evaluation of
message inputs. The pattern x : t matches any term of type ¢ and binds it to
x. For a term M, the pattern = M matches any term N such that M = N. A
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pattern tuple (71,75, ...,7T,) matches any term tuple (M7, Ms, ..., M,) where
pattern matching is applyed recursively to each term M, against pattern T;. For
example, the pattern (= ATT, imsi : id) in line 19 matches any term pair where
the first one is the constant ATT and the second one is of type id.

Processes are defined as sequences of events. The name restriction event (line
26) creates a fresh name of a specific type and binds it inside the following events.
The communication event out(M, N); P (13), sends the term N on channel
M and continue as the process P. The communication event in(M,T); P (25),
awaits a message matching pattern 7' on channel M and continues as P. The
conditional if M else P then @ (15) continues as the process P if the term M
evaluates to true, continues as the process @ if M evaluates to another value,
or stops if M evaluation fails. The statement let T'= M in P else Q (28) tries
to match the term M with pattern T', continues as the process P if there is a
match, or continues as the process () otherwise.

3.3 Security Properties

Security properties are declared with the keyword query. In our example of
AKA, one of the goals is to establish the shared session key Kasyg between the
MME and the UE. In order to check this, we consider the following properties.

event ueReachable(). event mmeReachable(). event hssReachable().

query event(mmeReachable()); event(hssReachable()); event(ueReachable()).

free secret: bitstring [private].

query attacker(secret).

event ueRunning(key). event ueCommit(key). event mmeRunning(key). event
mmeCommit( key) .

query k: key; event(ueCommit(k)) => event(mmeRunning(k)).

query k: key; event(mmeCommit(k)) => event(ueRunning(k)).

query k: key; inj—event(ueCommit(k)) => inj—event(mmeRunning(k)).

query k: key; inj—event(mmeCommit(k)) => inj—event(ueRunning(k)).

The first two declarations are used for sanity checks. The “reachability” events

of line 1 are intended to be executed each at the end of the corresponding process

macro. Events are special extension to the process grammar that do neither affect

the attacker knowledge, nor the execution of the processes. When analyzing the

query of line 2, ProVerif attempts to falsify its claims by generating traces that

reach those events. This is useful to check that the processes can be fully executed

and that there are no blocking events for example due to a constantly failing

pattern matching. The declarations in lines 3-4 are used to check secrecy of the

established key. The attacker (line 4) is a built-in predicate that can be used

to check which terms are compromised.

The last declarations are correspondence assertions used for checking mutual
agreement between the UE and the MME on the key. The syntax to query a
basic correspondence assertion uses the event keyword (lines 5-7). Correspon-
dence assertions where a one-to-one mapping is required between events, use the
inj-event keyword instead. In our case, we recall Lowe’s definitions of weak and
injective agreement [20] and use the special “running” and “commit” events de-
clared in line 5 together with the correspondence assertions of lines 6-7 to check
for agreement on the established key between the MME and UE processes. In



general, a commit event is added in the end of each “responder” process, to which
another “initiator” process is trying to authenticate. Then for each commit, a
running event is added in the “initiator” process before the last send operation.

3.4 Analysis and Discussion

ProVerif is able to solve all the properties except one of the reachability queries
of line 2 and the injective correspondence assertion query of line 9. The remaining
queries are solved as expected. More precisely, the correspondence and secrecy
ones are proved to hold and the reachability queries are falsified.

The unresolved reachability query can be solved by restricting the attacker
model. This is can be done by a special feature of ProVerif for setting internal
configuration parameters. One of those parameters representing the attacker
capability can be set to either passive or active directly in the model. Setting
the attacker to passive has the effect of reducing the number of traces (improving
the chances for termination) but the analysis is no longer sound. This is not a
problem for reachability because a trace that reaches the target event in the
restricted model is also valid in the non restricted one. ProVerif is then able
to solve the unanswered reachability claim. Another way for achieving the same
effect consists in declaring all communication channels as private. Intuitively, the
goal is to check whether the protocol can be run at all in a secure environment
by honest agents.

For the unresolved correspondence assertion, while further experimenting
with the model we observed the following. When strengthening the claim by
including an additional id parameter (see below), executing the corresponding
commit and running events with the additional argument set to the imsi, and
setting the attacker model to passive, then ProVerif is able to find an attack
trace even for the corresponding non-injective assertion.

query i: id, k: key; event(mmeCommit(i, k)) => event(ueRunning(i, k)).

The attack trace is due to the ProVerif approximation [8]. In the following
we describe intuitively the effects of this approximation. First, a send operation
on private channels is never blocking even in case of none matching operation.
This does not correctly model communication in the real system as it might
be reliable (for example transport over TCP). Second, the private channel is a
shared broadcast one. In our case, this is problematic as what is really needed
is a tunnel-like model of communication that simulates peer-to-peer (secure)
channels. The model provided by ProVerif is too broad allowing even honest
agents to read and use messages not destined to them. Therefore, false attack
traces sometimes appear.

4 Session Management

We consider now the procedures that take place after the terminal and MME
have established the Kasmr by AKA (see Fig. 2). Observe that the terminal has



also informed the MME about which security capabilities it supports (the ATT
message). The security capabilities include lists of encryption and integrity pro-
tection algorithms that the terminal supports. As a consequence, when analyzed
separately, some initialization steps are needed in the protocol models in order
to set up the required security context assumed to be established by AKA.

4.1 NAS Security

NAS security is enabled by a simple request-response procedure [1] (TS 24.301)
that we refer to as the NAS Security Control Procedure NAS_SCP (see Fig. 2).
The procedure is initiated by the MME sending a security mode command mes-
sage (NSM) to the terminal. This message indicates the security algorithms cho-
sen by the MME. The message includes a special identifier eksi indicating which
KasMmE to use as the basis for the key derivation. For various reasons there may
be more than one Kagyp known simultaneously to the terminal and network [1]
(TS 33.401). The message also contains the list of security capabilities provided
earlier by the terminal.

In response, the terminal verifies that the received security capabilities are
consistent with what the terminal supports. If the verification fails, the terminal
rejects the command thus preventing bidding-down attacks. If the verification
succeeds, the terminal sends an encrypted and integrity protected completion
message (NSC). All NAS messages are protected from replay attacks by inclusion
of a sequence number (omitted in our models).

Model Description. Figure 4 shows a ProVerif model of the NAS_SCP proto-
col. Compared to the AKA model, the novelty in the declaration part consists
in the use of predicates and clauses to model capability sets (lines 6-9). Predi-
cates are declared like constructors and clauses are needed in order to define the
meaning of the predicates. In our case, we declare a capability set constructor
together with a constant representing the empty set in line 6. Then we use the
predicate of line 7 to model the set membership test function which is defined
below in the clauses of lines 8-9.

Furthermore, the functions used for the shared encryption scheme (lines 4-
5) have been modified in order to take into account an additional parameter
representing the algorithm to be used.

The main process executes some initialization events then expands and forks
in parallel unbounded number of sessions of two process macros representing
a UE (line 13) and an MME (20). The initialization steps consist in creating
a capability set of two arbitrary algorithms (lines 31-32), disclosing it to the
attacker (33), and finally creating a secret Kagmg key (34). The key is supposed
to have been created earlier during an AKA run, while the capabilities should
have been sent by the UE at startup in an attach request. Both parameters are
used as input arguments to the process macros.

The use of predicates is illustrated in line 23. This particular event binds
the variable a: alg to a value that satisfies the predicate mem(a,uecaps) in
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free pubch: channel. free secch: channel [private].
type key.type alg. type caps. type id. type msgheader.
const NSM, NSC: msgheader. const NASINT, NASENC: bitstring.
fun psenc(alg, bitstring, key): bitstring.
reduc forall a: alg, x: bitstring, y: key; psdec(a, psenc(a, x, y), y) = Xx.
fun consset(alg, caps): caps [data]. const emptyset: caps.
pred mem(alg, caps).
clauses forall x: alg, y: caps; mem(x, consset(x, y));
forall x: alg, y: caps, z: alg; mem(x, y) —> mem(x, consset(z, y)).

fun kdf(bitstring , key): key. fun ksi(key): id.
fun pmac(alg, bitstring , key): bitstring.
free secret: bitstring [private].
let UE(uecaps: caps, kasme: key) =

in(pubch, (=NSM, =ksi(kasme), =uecaps, a: alg, nasmac: bitstring));

let knasint: key = kdf(NASINT, kasme) in

if mem(a, uecaps) && nasmac = pmac(a, (NSM, ksi(kasme), uecaps, a),
knasint) then
let knasenc: key = kdf(NASENC, kasme) in

let msg: bitstring = (secret, pmac(a, (NSC, secret), knasint)) in
out (pubch, (NSC, psenc(a, msg, knasenc))).(x security mode complete =)
let MME(uecaps: caps, kasme: key) =
let eksi: id = ksi(kasme) in
let knasint: key = kdf(NASINT, kasme) in (% integrity protection x)
let a: alg suchthat mem(a, uecaps) in
let nasmac: bitstring = pmac(a, (NSM, eksi, uecaps, a), knasint) in
out (pubch, (NSM, eksi, uecaps, a, nasmac));(x security mode command x)
in (pubch, (=NSC, payload: bitstring));
let knasenc: key = kdf(NASENC, kasme) in (x confidentiality =)

let (=secret, nasmacr: bitstring) = psdec(a, payload, knasenc) in
if nasmacr = pmac(a, (NSC, secret), knasint) then 0.
process

new al: alg; new a2: alg;

let uecaps = consset(al, consset(a2, emptyset)) in
out (pubch, uecaps);

new kasme: key;

(('UE(uecaps, kasme)) | (!MME(uecaps, kasme)))

Fig.4: NAS security establishment model

the rest of the process. Intuitively, this models the MME choosing an algorithm
among the ones supported by the UE. During the analysis ProVerif considers
all possible choices.

Analysis and Discussion. The goal of NAS_SCP is to establish the encryp-
tion and integrity keys, Knasenc and Kyasint, that are to be used for the NAS
protocol between the UE and the MME. In addition to the secrecy and sanity
queries, we consider the following correspondence assertions in order to check
agreement on the established keys and the chosen algorithm.

event ueRunning(alg, key, key). event ueCommit(alg, key, key).
event mmeRunning(alg, key, key). event mmeCommit(alg, key, key).
query a: alg, kl: key, k2: key;
event (mmeCommit(a, kl, k2)) = event(ueRunning(a, k1, k2)).
query a: alg, kl: key, k2: key;
inj—event (mmeCommit(a, k1, k2)) => inj—event(ueRunning(a, k1, k2)).
query a: alg, kl: key, k2: key;
event (ueCommit(a, kl, k2)) => event(mmeRunning(a, k1, k2)).
query a: alg, kl: key, k2: key;
inj—event (ueCommit(a, kl, k2)) => inj—event(mmeRunning(a, k1, k2)).




ProVerif is able to solve all the properties. The reachability queries are all
falsified. The secrecy query and the basic correspondence assertions are proven
to hold. However ProVerif reports attack traces on the injective assertions. This
is not surprising as there is nothing in the protocol model that binds the runs
to unique names (no creation of fresh names within the replicated processes). In
fact the traces show that the attacker can falsify injection simply by duplicating
and dropping messages to obtain a run between multiple parallel instances of
MMEs against a single session of a UE and viceversa.

Modifying the model by moving the Kasmr key creation within the UE
process and making the MME process read the key from a table leads to ProVerif
proving that one of the direction holds. Intuitively, in the new model each run
of the UE process is bound to a unique fresh key. Observe that this is a different
system model since each replication of UE represents a new device rather than
just a rerun of the same one. Furthermore, ProVerif is still able to report an
attack trace for the other direction. This is expected as the modifications cannot
prevent running in parallel multiple instances of MMEs that use the same Kasug
key and that can be matched against a single UE session. Since the Kagyg can
only be present in one MME at a time, namely the one in which the UE is
registered, it is not possible that two well behaved MMEs would be running
NAS_SCP procedures simultaneously. Neither would a well behaved MME run
two NAS_SCP procedures simultaneously by itself.

In fact well behaved agents would run the procedures sequentially. This we
could not express in ProVerif. Even if we can express this sequential behavior, the
injective agreement property will not hold. More precisely, assume the MME has
sent two security mode command messages in separate sequential sessions, then
it will not be able to distinguish to which session a reply belongs. This is because
there is no information in the messages that tie them together, like for example
a transaction identifier. It should be pointed out, that if an MME sends the
same information repeatedly in different sessions, then regardless of which reply
reaches the MME, the outcome of the whole procedure (algorithm negotiation
and necessary key derivation) will be the same. From this perspective, injective
agreement may not be necessary for this particular procedure.

4.2 RRC Security

Establishment of RRC security is achieved as follows: First, in order to send or
receive data, the terminal needs to establish bearers to carry it. This is achieved
by running a NAS Service Request Procedure with the network [1] (TS 24.301)
and to which we refer by NAS_SRP (see Fig. 2). The terminal initiates the
procedure by sending a service request (NSR) to the MME via the eNB. The
radio channel between the UE and the eNB is not secured at this point, but this
is not a problem since the NAS protocol provides its own security.

Upon reception of the request, the MME derives a Konp from the currently
active Kasve and the message sequence number associated with the NAS mes-
sage. The latter parameter ensures that a fresh key is generated every time
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the procedure is run. This is necessary to prevent key stream re-use and re-
play attacks against the RRC protocol. The MME transfers the K¢np together
with the terminal’s security capabilities to the eNB. The eNB sends a com-
mand message (RSM) to the terminal. This command includes the chosen algo-
rithms and is integrity protected to prevent modification of the algorithm se-
lection [1](TS 36.331). When the terminal receives the command, it derives the
necessary keys and replies to the eNB with an encrypted and integrity protected
completion message (RSC). From this point on, all RRC messages are integrity
protected and encrypted, and all user plane traffic is encrypted.

Model and Analysis. A ProVerif model of the NAS_SRP is provided in Fig. 5.
The declaration part has been removed as it is identical to that of the NAS_SCP
model (see Fig. 4) except for some of the message headers and the constants
used in the key derivation function, easily found in the model.

let UE(uecaps: caps, kasme: key) =
new nasulcount: bitstring; out(pubch, nasulcount);
out(secch, (NSR, nasulcount));(* initial service request x)
in(pubch, (=RSM, a: alg, rrcmac: bitstring));
let kenb: key = kdf(nasulcount, kasme) in
let krrcint: key = kdf(RRCINT, kenb) in
if mem(a, uecaps) && rrcmac = pmac(a, (RSM, a), krrcint) then
let krrcenc: key = kdf(RRCENC, kenb) in
out (pubch, (RSC, psenc(a, (secret, pmac(a, (RSC, secret), krrcint)),
krrcenc))).
let MME(uecaps: caps, kasme: key) =
in(secch, (=NSR, nasulcount));
let kenb: key = kdf(nasulcount, kasme) in
out(secch, (ISC, uecaps, kenb));(x initial context setup x)
in(secch, =CSC).
let eNodeB() =
in(secch, (=ISC, uecaps: caps, kenb: key));
let krrcint: key = kdf(RRCINT, kenb) in (% integrity protection x)
let a: alg suchthat mem(a, uecaps) in
let rrcmac: bitstring = pmac(a, (RSM, a), krrcint) in
out (pubch, (RSM, a, rrcmac));(x security mode command =)
let krrcenc: key = kdf(RRCENC, kenb) in (x confidentiality x)
in (pubch, (=RSC, payload: bitstring));(x security mode complete x)
let (=secret, rrcmacr: bitstring) = psdec(a, payload, krrcenc) in
if rrcmacr = pmac(a, (RSC, secret), krrcint) then
out(secch, CSC).(x initial context setup response x)
process

(('UE(uecaps, kasme)) | (!eNodeB()) | (!MME(uecaps, kasme)))

Fig.5: RRC security establishment model

The main process (line 26) executes some initialization steps then forks in
parallel an unbounded number of sessions of three processes representing an UE
(1), an MME (10) and an eNB (15) node. The initialization steps (omitted in the
figure) are required to set up the parameters established earlier which are the
user capabilities and the Kasyg key in a similar manner to how it is done in the



model of Fig. 4. The additional in the model parameter denoted by nasulcount
represents the NAS protocol message counter. This counter is used for deriving
the Konp key (lines 5 and 12) that is to be provisioned to the eNB (13 and 16).
It is incremented for each message exchange between the UE and MME. For
example, this would be the effect of the send and matching receive operations of
lines 3 and 11.

We model the counter by a fresh variable that we disclose (line 2) and make
sure that it is synchronized by including it in the first NAS message (line 11). Ac-
cording to the specification [1](TS 33.401), when the counter, which is bounded,
is about to wrap around then a new AKA run can be triggered in order to
generate a new Kagve key and thus preventing a Kenp key reuse.

For the security properties, we consider the secrecy and sanity queries in a
similar manner to the previous models. For the correspondence assertions, we
focus on the agreement on the established K.np key and the chosen algorithm
between the UE and the eNB. ProVerif solves all the queries as expected except
one of the injective correspondence assertions (see Table 1).

5 Mobility Management

An eNB may detect that another eNB is better suited to serve an active ter-
minal, for example because of better radio conditions. The source or serving
eNB (denoted by S-eNB) hands over the terminal to the target eNB (denoted
by T-eNB). There are two compound procedures to perform a handover. The
first is a core network assisted handover that is called S1 handover (HO_SI).
The second is a handover without core network assistance called X2 handover
(HO_X2). The names come from the primary network interfaces used during the
execution of the handovers.

5.1 X2 Handover

Handovers can be performed after the terminal has completed all necessary pro-
cedures so that RRC and NAS security has been activated. The X2 handover
(Fig. 6) is initiated by the S-eNB calculating a Kl key from the currently
active Keng and sending it together with the terminal security capabilities to
the T-eNB in a handover request message (REQ). The T-eNB replies with the
required configuration information for the terminal connection. This information
includes the chosen algorithms that the T-eNB and the terminal shall use (CMD).
The S-eNB then forwards the reply to the terminal, which confirms the handover
with a completion message (CPL). In the last step, the T-eNB retrieves a new
key called the Next Hop key (NH) from the MME. The NH which is derived
from the KasmE is to be used as a basis for the Kl calculation in the next
handover event [1] (TS 33.401).
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CPL: Handover Complete {} Encrypted
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Fig.6: X2 handover

5.2 S1 Handover

In an S1 handover (Fig. 7), the S-eNB and target T-eNB are not directly con-
nected. Instead, the S-eNB sends a handover required message (RQD) to the MME
containing the security capabilities of the terminal. The MME then derives the
NH key and sends it to the target node, together with the UE capabilities. The
T-eNB uses the NH key to derive the K¢np for communication with the termi-
nal, and sends a handover command (CMD) containing the chosen algorithms to
the source node. Finally, the S-eNB forwards the message to the terminal which
replies to the T-eNB by a handover completed message (CPL).

J/7PSK\N J/7PSK\N

D UE \\(Au) S-eNB \\(Au) T-eNB %

ROD: K ng» UEalgs

REQ: NHy, UBaze

ACK: RRCalgS
CMD: RRCy1g0 | CMD: RRC g
{[cpL]}
RQD: Handover Required PSR: Path Switch Request
REQ: Handover Request ACK: Path Switch Acknowledge
CMD: Handover Command [ ] Integrity protected
CPL: Handover Complete {} Encrypted

Fig. 7: S1 handover
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5.3 Formal Models and Analysis

Both handover procedures involve four agents: a UE, a source S-eNB, a target
T-eNB and an MME. The procedures are very similar but provide slightly dif-
ferent security guarantees. The ProVerif models of the protocols are provided
in Fig. 8 and Fig. 9. The declaration parts have been omitted as they are very
similar to previous models except for some types and constants.

let UE(uecaps: caps, kenb: key, cellid: bitstring) =
in(secch, (=CMD, a: alg));
if mem(a, uecaps) then
let kenbstar: key = kdf(cellid, kenb) in
out (pubch, (CPL, senc((a, mac((CPL, a), kenbstar)), kenbstar))).
let MME(nh_2: key) =
in(secch, =PSR);
out(secch, (ACK, nh_.2)).
let SeNodeB(uecaps: caps, kenb: key, cellid: bitstring) =
let kenbstar: key = kdf(cellid, kenb) in
out(secch, (REQ, kenbstar, uecaps)).
let TeNodeB() =
in(secch, (=REQ, kenbstar: key, uecaps: caps));
let a: alg suchthat mem(a, uecaps) in
out(secch, (CMD, a));
in(pubch, (=CPL, msg: bitstring));
let (=a, rrcmac: bitstring) = sdec(msg, kenbstar) in
if rrcmac = mac((CPL, a), kenbstar) then
out(secch, PSR);
in(secch, (=ACK, nh_2: key)).
process
new al: alg; new a2: alg;
let uecaps = consset(al, consset(a2, emptyset)) in
out (pubch, uecaps);
new kasme: key; new nasulcount: bitstring; out(pubch, nasulcount);
let kenb: key kdf(nasulcount, kasme) in
let nh_1: key kdf(tobitstring (kenb), kasme) in
let nh_2: key = kdf(tobitstring(nh_.1), kasme) in
new cellid: bitstring; out(pubch, cellid);
( ('UE(uecaps, kenb, cellid)) | (!SeNodeB(uecaps, kenb, cellid)) |
(! TeNodeB () ) ('MME(nh_2)) )

Fig. 8: X2 handover model

In the model of X2 handover (Fig. 8), the main process performs the required
initialization steps and forks unbounded sessions of the processes defined in
lines 1, 6, 9 and 12 representing respectively a UE, an MME, a S-eNB and a
T-eNB. The initialization steps include defining the UE capabilities (lines 22-
24), the Kasmr key shared between the UE and the MME (25), and the Kenp
shared between the UE and the S-eNB (26). The remaining additional steps are
needed to establish some parameters required for deriving the current and future
handover keys such as the next hop key (27-28) and the cell identifier for the
T-eNB (29).

The model of S1 handover (Fig. 9) requires almost the same initialization
steps (omitted here) except that the additional cell identifier cellid parameter
of HO_X2 is no longer needed. The main difference between the models is in the
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let UE(uecaps: caps, nh_2: key) =
in(secch, (=CMD, a: alg));
if mem(a, uecaps) then
out(pubch, (CPL, senc((a, mac((CPL, a), nh_2)), nh_2))).
let MME(uecaps: caps, nh_2: key) =
in(secch, =RQD);
out(secch, (ACK, nh_.2, uecaps)).
let SeNodeB(kenb: key) =
out(secch, RQD).
let TeNodeB() =
in(secch, (=ACK, nh_2: key, uecaps: caps));
let a: alg suchthat mem(a, uecaps) in
out(secch, (CMD, a));
in(pubch, (=CPL, msg: bitstring));
let (=a, rrcmac: bitstring) = sdec(msg, nh_2) in
if rrcmac = mac((CPL, a), nh_2) then 0.
process

(”.(!UE(uecaps, nh_2)) | (!SeNodeB(kenb)) |
(! TeNodeB()) | (!MME(uecaps, nh_-2)) )

Fig.9: S1 handover model

MME role. In HO_S1, it is the MME that computes the key to be used in the
T-eNB which is NHy. However, in HO_X2 it is the S-eNB that computes the
target’s key which is the K. In addition, the MME provides its key (NHs) in
the last steps of the protocols (lines 7-8 and 20-21) for use in the next handover.

In both handover models, we consider the same type of sanity queries in order
to check correctness. Recall that such queries are for special reachability events
executed at each end of the process macros. ProVerif is not able to prove all of
them. Nevertheless, the attack traces of the queries that ProVerif was able to
falsify, show that the reachability events for the unresolved queries are executed
as well. For the correspondence assertions, the aim is to prove agreement on the
received handover key (K!yp or NHs) and the chosen algorithm between the UE
and the T-eNB. ProVerif is able to prove all the assertions for the HO_X2 model
except one (see Table 1). For the HO_S1 model, ProVerif is unable to prove the
injective assertions, but proves the basic ones.

6 Conclusion

We have presented our work on security protocols in LTE. We have used Pro Verif
to formalize and verify the protocols. Our analysis has shown that all the secrecy
and weak agreement properties hold which was expected. However, we had dif-
ficulties proving stronger agreement properties. All our results are summarized
in Table 1. To the best of our knowledge, the security command procedures and
handover procedures have not been previously analyzed in this manner. During
the modeling process, our aim was to remain as faithful as possible to the 3GPP
specifications [1] of the protocols and their trust model. One important aspect
that is lacking in ProVerif is the support for modeling local state information.
As we explain later, support for that would relieve protocol designers from the



Table 1: Analysis Results

Property AKA NAS_SCP NAS_SRP HO_X2 HO_S1
secrecy true true true true true
weak-agree UE = ... true true true true true
weak-agree ... = UE true true true true true
inj-agree UE = ... true false true true unresolved
inj-agree ... = UE  unresolved false unresolved unresolved unresolved

common and tedious tasks of ensuring uniqueness of inputs to key derivations
functions.

ProVerif verifies the models in the order of seconds on a regular laptop and
the runtime is hence adequate for practical use. The concepts of the ProVerif
input language matches the concepts used in the 3GPP specifications. Therefore,
constructing the models does not take any significant time assuming familiarity
with ProVerif and the system under study.

Future Work. We have been experimenting with other formal verification tools.
For this first work, we thought that ProVerif offers a good compromise for ease
of use and expressiveness of the input language. Nevertheless, we are planning
to conduct a more thorough evaluation and comparison of similar tools. Fur-
thermore, we believe that in an industrial context, such as for proposals to
standardization processes, several tools should be used in combination in order
to overcome their shortcomings. This does not necessarily mean that a process
as defined by a standardization organization must formally mandate the use of
such tools. In fact, as we explain below, there are few aspects in the protocols
that we could not handle properly with ProVerif.

In general, freshness is achieved by guaranteeing uniqueness of the derived
keys in each session. This can be implemented by using nonces, like in AKA for
the derivation of the Kasyg key. However, all the derivation of lower level keys
rely on other protocol parameters such as counters, cell identifiers, etc. Counters
are part of the protocol state that is continuously being updated. We believe
that any issue in the considered protocols would be most likely related to this
aspect, especially when different protocols are interleaved and used arbitrarily
in other more complex compound procedures. State-based formal verification
tools can be better suited to model check such features. However in order to
improve efficiency of such (usually exhaustive) state search, one can assume a
weaker attacker model. As a future work, we are investigating to which extent
the attacker model can be simplified and still be able to find attacks.

Other continuations of this work include performing similar analysis of the
protocols for inter-operability between LTE and other types of radio access net-
works (GSM and WCDMA), and updating our models to handle different sce-
narios. For example, in the AKA model of Fig. 3, each run of the UE process
represents a new device because in every run, a new fresh pair of IMSI, K is cre-
ated and used. The model can be changed by adding another similar UE process



which instead, gets the pair from the table being filled by the original process.
This is how one can model arbitrary reruns of AKA by the same UE. In addition,
the mobility models can be enhanced to include multi hop handovers. This can
be used to verify further security properties, e.g. two hop forward security.
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