

A USIM COMPATIBLE 5G AKA PROTOCOL WITH PERFECT FORWARD SECRECY

Jari Arkko, Karl Norrman, Mats Näslund and Bengt Sahlin

- > Background and motivation
- > Proposed 5G authentication protocols
- > Summary and conclusions

MOTIVATION

- Recent reports of compromised subscriber authentication keys in mobile networks
- Compromised authentication keys imply passive attacker can eavesdrop and decrypt traffic

BACKGROUND - AKA

PERFECT FORWARD SECRECY

> PFS – term has been used to mean different things in discussions lately

- > In this paper we use the classic definition of PFS, namely
 - The session key (KASME) is secure even if the long-term key (K) is compromised in the future [4]
- According to this definition: PFS gives no guarantees for session keys generated AFTER the long-term key is compromised

[4] W. Diffie, P. van Oorschot and M. Wiener, "Authentication and Authenticated Key Exchanges," Designs, Codes and Cryptography 2 (2): pp. 107–125, June 1992.

PERFECT FORWARD SECRECY

> PFS is good, but not the only property we are looking for

Also want to make it more difficult to obtain KASMEs generated after K has been compromised

> Diffie-Hellman helps with that too, in addition to giving PFS

DIFFIE-HELLMAN

> Using DH for session key establishment gives PFS, but also:

> Even if attacker has long-term key: passive attacks remain ineffective

> To make efficient attack, active MITM is required

DIFFIE-HELLMAN

> We propose two options, A and B

> Option A: use KASME to authenticate a DH exchange between MME and UE

> Option B: use K to authenticate DH exchange between HSS and UE

OPTION A

OPTION A - ANALYSIS

- > No changes to HSS
- > No changes to HSS-MME interface (S6)
- > No changes to USIM
- > Some overhead over air interface
- > DH processing in ME and MME

OPTION B

OPTION B - ANALYSIS

- > USIM is unchanged
- > Smaller overhead over air interface
- > AUTN serves as MAC of g^x (since RAND depends on g^x)
- > RES is replaced by MAC_{RES}(g^y), serves both as MAC of g^y and as authentication response

- > Can be introduced in 5G without updating (U)SIMs
- > Even if attackers get hold of K, they still effectively need to be an active MITM to get the session key
- > Fits in the message framework used in 2G/3G/4G with minor updates to message formats
- > Does not require rolling out a PKI

CONCLUSION

> Shown effective ways to limit effects of compromised K

> Most attractive for future systems due to amount of deployed legacy equipment

Protection of long-term secret still important, regardless of which protocols are used

ERICSSON