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ABSTRACT
Message Authentication Codes (MACs) used in today’s wire-
less communication standards are not capable of correcting
errors which may occur during transmission. If MAC ver-
ification fails, the message is typically discarded and a re-
transmission is requested. Re-transmissions waste energy
and increase average packet latency. Excessive re-transmis-
sions may lead to network congestion. In this paper, we
introduce a new MAC, MAC-C, which efficiently combines
integrity protection with single-bit error correction and pro-
vide a detailed quantitative analysis of its security.The effi-
ciency of MAC-C makes it a good candidate for simpler 5G
radio types and use cases with constrained resources such as
Machine Type Communications (MTC).

CCS Concepts
•Security and privacy→Hash functions and message
authentication codes; Mobile and wireless security;

Keywords
Message authentication; data integrity; hash function; error-
correction; 5G

1. INTRODUCTION
Various message authentication methods are used today

at control plane of 3G and 4G 3GPP mobile networks. How-
ever, these methods are not able to correct errors which
may occur during transmission. Existing Message Authen-
tication Codes (MACs), such as keyed Hash Message Au-
thentication Code (HMAC) [2] or Cipher Block Chaining
Message Authentication Code (CBC-MAC) [3], simply re-
compute a MAC for the received message and compare it

.

with the received MAC. If two MACs disagree, the message
is typically discarded and a re-transmission is requested. Re-
transmissions waste energy and increase average packet la-
tency. Excessive re-transmissions may lead to network con-
gestion. It would be advantageous to have a method which
efficiently combines cryptographic authentication with error-
correction, reducing the number of message re-transmissions
required to pass MAC verification.

In this paper, we propose a new type of MACs, MAC-
C, which are capable of correcting single-bit errors in the
received message. The proposed method might potentially
reduce the number of message re-transmissions required to
pass MAC verification since single-bit errors can be cor-
rected by the receiving device. This translates into lower
average packet latency and savings of energy.

Note that error-detection and correction always requires
the addition of redundant information to the original data.
i.e. increasing bandwidth, with the related consequence of
spending more power for message transmission. However,
if we replace the 24-bit Cyclic Redundancy Check (CRC)
checksum at the physical (PHY) layer of LTE by the pre-
sented MAC-C, then we do no longer need the 32-bit mes-
sage authentication code MAC-I at the Packet Data Conver-
gence Protocol (PDCP) layer, given that MAC-C provides
the same 32-bit security as MAC-I. Bandwidth can even be
saved if the presented MAC can provide 32-bit security with
less than the total number of bits in CRC and MAC-I. In
this paper, we make a detailed quantitative analysis of the
security of MAC-C and show that savings of bandwidth are
possible. We also show that MAC-C guarantees the detec-
tion of the same types of errors as CRC and therefore the
replacement does not impact reliability.

MAC-C seems to be particularly useful for simpler 5G ra-
dio types, e.g. the ones used for direct communication in
sensor networks, and use cases such as Machine Type Com-
munications (MTC) where storage, computing and energy
resources are very constrained. It is quite likely that For-
ward Error Correction (FEC) codes will not be used in at
least some of such simpler types of 5G radio due to the large
overhead of FEC. In addition, MAC-C might potentially
be useful for 3GPP mobile broadband radio access systems
which are designed to adapt FEC rate to channel error con-
ditions. For example, adaptive modulation and coding adds
more error-correction bits per packet when there are higher



error rates in the channel, or takes them out when they are
not needed. MAC-C may be employed in such systems in
order to protect transmissions when FEC is switched off, or
when the correction of single-bit errors is sufficient. In the
case when FEC is switched on, the error-correcting stage of
MAC-C can be switched off and MAC-C can be used for
detecting errors only. However, a number of issues needs
to be resolved to make MAC-C suitable for the 5G mobile
broadband. We discuss these issues in Section 8.

Note that, in this paper, by ”5G radio” we mean future ra-
dio types in a broad sense, not only radio specified by 3GPP
standard. This is because it is expected that in the future
Networked Society the wireless communication of many dif-
ferent types will be necessary to satisfy growing needs of
society and industry.

The paper is organized as follows. Section 2 gives an
introduction to linear codes and cryptographic hash func-
tions. Section 3 introduces a new family of cryptographic
hash functions. Section 4 shows how the new family of hash
functions can be used for secure authentication of messages.
Section 5 presents the security analysis. Section 6 analyses
the class of linear codes induced by the new hash family.
Section 7 describes implementation details. Section 8 dis-
cusses applicability of the presented method to 5G mobile
broadband. Section 9 reviews previous work. Section 10
concludes the paper.

2. BACKGROUND
In this section, we give a brief introduction to linear codes

and cryptographic hash functions based on random matrices.
A reader familiar with these notions can skip this section.

2.1 Linear Codes
A (k,m) linear code over the fieldGF (2) is am-dimensional

subspace of a vector space Vk over GF (2) [19].
All codewords of a (k,m) linear code can be written as a

linear combination of m basis vectors {v0, v1, . . . , vm−1} as

c = d0v0 + d1v1 + . . .+ dm−1vm−1

where d = (d0, d1, . . . , dm−1) is m-bit data and “+” is the
GF (2) addition.

The encoding of linear codes is performed using the gen-
erator matrix G which is an m×k matrix whose rows are the
basis vectors {v0, v1, . . . , vm−1}. A codeword c = (c0, c1, . . . ,
ck−1) is computed by multiplying the data vector d by the
generator matrix G:

c = d ·G.
Separability is a desirable feature of codes since, after error

correction, the data can be easily retrieved by truncating the
last (k−m) bits of a codeword. A separable linear code can
be constructed by choosing basis vectors which result in a
generator matrix of the form [ImA], where Im is an identity
matrix of size m×m.

Errors are detected using the parity check matrix P which
is a (k−m)×k matrix constructed as P = [AT Ik−m] where
AT denotes the transpose of A. The matrix P has the prop-
erty that, for any codeword c,

P · cT = 0.

The encoded data can be checked for errors by multiplying
it by the parity check matrix:

δ = P · cT .

The resulting (k − m)-bit vector δ is called the syndrome.
If the syndrome is zero, it is assumed that no error has
occurred. Otherwise, the message contains an error. De-
pending on the code distance of the code, this error may be
correctable or not.

Code distance of a code C, denoted by Cd is the mini-
mum Hamming distance between any two distinct pairs of
codewords of C. The code distance determines the error-
detecting and correcting capabilities of a code. A code can
correct all errors in c bits and simultaneously detect up to
d additional errors if and only if its code distance is

Cd ≥ 2c+ d+ 1.

A linear code with the code distance Cd for m-bit data can
be constructed by selecting a parity check matrix P in which
every subset of Cd − 1 columns are linearly independent.

If a code has code distance 3, then, if the syndrome δ
matches one of the columns of P , it is assumed that a single-
bit error has occurred. The position of the matching column
in P corresponds to the bit position of the error, so the error
can be located and corrected. If the syndrome is none-zero
and it is not matching any of the columns of P , then it is
assumed that a multiple-bit error has occurred.

2.2 Cryptographic Hash Functions based on
Random Matrices

A cryptographic hash function is a hash function that gen-
erates a cryptographically secure hash value for an arbitrary
message. Any change (accidental or intentional) to the mes-
sage is expected to change the hash value, at least with a
certain high probability. Thus, the hash value can be used
for providing integrity assurance of the message.

Let M = (M0,M1, . . . ,Mm−1) be a binary message of
length m. According to Carter and Wegman [26], the family
of hash functions H = {hA : {0, 1}m → {0, 1}n} computed
as

hA(M) = M ·A,
where A is an m× n random binary matrix, is a universal2
family of hash functions. A family of hash functions is called
universal2 (or (1/R)-balanced) if no pair of distinct inputs
collide under more than (1/R)th fraction of the functions,
where R is the size of the range of H. For R = 2n, we get:

∀M1,M2 ∈ {0, 1}m,M1 6= M2 : Pr[hA(M1) = hA(M2)] ≤ 1

2n

where the probability is taken over hA chosen uniformly at
random from H.

Furthermore, the affine version of the family H, namely

hA,z(M) = M ·A⊕ z,

where z ∈ {0, 1}n is a random pad and “⊕” is the bitwise
XOR, is strongly universal2. A family of hash functions is
called strongly universal2 if the probability that any pair of
distinct inputs hash to any pair of hash values is (1/R2).
For the domain {0, 1}m and range {0, 1}n, we get

∀M1,M2 ∈ {0, 1}m,M1 6= M2,∀a1, a2 ∈ {0, 1}n

Pr[hA(M1) = a1 ∧ hA(M2) = a2] ≤ 1

22n
.

Strong universality implies uniformity, i.e. that all hash
values are equally likely:

∀M 6= 0,∀a ∈ {0, 1}n : Pr[hA(M) = a] ≤ 1

2n
.



Krawczuk [16] has shown that if, instead of using random
matrices, a pseudo-random matrix formed by the consec-
utive states of an n-bit LFSR with an irreducible genera-
tor polynomial is used, then the description size of Carter-
Wegman family can be reduced from n(m+ 1) to 3n (n bits
for the generator polynomial, n bits for the initial state of
the LFSR and n bits for the random pad z). The resulting
hash function family is ε-balanced for ε = m/2n−1 instead
of being perfectly balanced as Carter-Wegman family.

3. NEW HASH FUNCTION FAMILY
Our construction restricts the pseudo-random matrices

even further in order to take advantage of error-correcting
properties of linear codes. Similarly to Krawczuk, we use
matrices formed by the consecutive states of an LFSR. In
addition, we require that every row in a matrix is distinct
and has the Hamming weight larger than 1. In order to as-
sure these two properties, we encode the states of an LFSR
with an even parity code and initialize the LFSR to a non-
zero state. We use LFSRs in the Fibonacci configuration in
which the the feedback is applied to the input bit only and
the remaining bits shift the content of the register.

Let (s0, s1, . . . , sn−2) be an initial state of an (n − 1)-bit
LFSR. Then, in our construction, the matrix A is of type:

A =


s0 s1 . . . sn−2 c0
s1 s2 . . . sn−1 c1

. . .
sm−1 sm . . . sm+n−3 cm−1

 (1)

where ci is an even parity check bit for the row i.
If an LFSR is initialized to a non-zero state, then any of

its states has the Hamming weight at least 1. Since an even
parity check bit ci is equal to 1 for any state (si, si+1, . . . ,
si+n−2) of the Hamming weight exactly 1, any n-bit vec-
tor (si, si+1, . . . , si+n−2, ci) constructed in this way has the
Hamming weight at least 2.

In order to assure that each row of an m× n matrix A is
distinct, we use (n− 1)-bit LFSRs with primitive generator
polynomials. This guarantees that the period of the LFSR
is maximum, i.e. 2n−1−1, implying that each non-zero state
repeats not earlier than after 2n−1 − 1 time steps. In this
way, we can generate a matrix A with up to 2n−1−1 distinct
rows. Therefore, in our construction, we require the message
length to be m ≤ 2n−1 − 1 or, equivalently, the hash length
to be

n ≥ dlog2(m+ 1)e+ 1.

To summarize, we introduce a new hash function family
H = {hp,s : {0, 1}m → {0, 1}n} where hp,s is computed as
follows.

Definition 1. Let p(x) be a primitive polynomial of de-
gree n − 1 over GF (2). Let s = (s0, s1, . . . , sn−2) be an
initial state of an n−1-bit LFSR in the Fibonacci configura-
tion with the generator polynomial p(x). For each p(x) and
each s 6= 0, we associate a hash function hp,s such that, for
any binary message M of length m ≤ 2n−1 − 1, hp,s(M) is
defined as the linear combination

hp,s(M) =

m−1∑
i=0

Mi · (si, si+1, . . . , si+n−2, ci), (2)

where ci =
∑i+n−2
j=i sj is an even parity check bit and the

addition and the multiplication are carried out in GF (2).

The affine version of the family H is defined as HA =
{hp,s,z : {0, 1}m → {0, 1}n} where hp,s,z(M) is given by

hp,s,z(M) = hp,s(M)⊕ z, (3)

where z ∈ {0, 1}n is a random pad and “⊕” is the bitwise
XOR.

The difference between Krawczuk’s hash family [16] and
the hash family H is that we require the polynomial p(x) to
be primitive rather than irreducible and that we use the nth
bit of the hash function for the parity check. As a result, for
m ≤ 2n−1 − 1, all m vectors (si, si+1, . . . , si+n−2, ci) in the
linear combination (2) are distinct and have the Hamming
weight larger than 1. As we show in Section 6, this implies
that the class of linear codes induced by H has the code
distance 3 and hence it can correct single-bit errors.

The description size of the hash family HA is 3n−2 (n−1
bits for the generator polynomial, n − 1 bits for the initial
state, 1 bit for the parity bit and n bits for the random pad).

Since we use only a subset of random matrices for con-
structing the hash functions, the resulting family is only
ε-balanced for a small ε (evaluated in Section 5) rather than
perfectly balanced as Carter-Wegman family. For the pur-
pose of authentication, this small ε represents no substantial
loss, while the guaranteed error-correction properties make
the resulting hash function family significantly more inter-
esting.

4. MESSAGE AUTHENTICATION
In this section, we show how the presented family of hash

functions HA can be used for secure authentication of mes-
sages.

We assume a typical setting [21] in which the sender and
the receiver transmit messages over an insecure channel where
messages can be maliciously modified, e.g. a public 5G ra-
dio network. The sender and the receiver share a secret key,
i.e. a shared secret which is unknown to the adversary. The
shared secret can be established, for example, by public key
techniques or symmetric techniques supported by SIM or
USIM cards, or similar, using the traditional methods [21].

A message authentication algorithm accepts as input a
secret key and a message to be authenticated and outputs
an authentication tag. The tag allows legitimate users, who
possess the secret key, to detect any changes in the message
content.

A sender authenticates a message M by computing the au-
thentication tag MAC-C as t = hp,s,z(M), where hp,s,z(M)
is defined by (3) and the primitive polynomial p(x), the
initial state s and the pad z are selected pseudo-randomly
based on a secret key. The computed tag t is appended to
M and the result is transmitted.

The modification of the linear hash function (2) to the
affine one (3) is necessary to prevent an attacker from in-
jecting all-0 messages. Without such a modification, the
hash value of an all-0 message would always be 0, indepen-
dently of the polynomial g(x) and the initial state s. The
reader familiar with e.g. the UIA2 MAC of the 3G standard
will recognize this type of construction. In that case, the
pad z is generated by the SNOW3G stream cipher [1].

A receiver authenticates a received message M ′ (which
may potentially differ from the submitted message M) by



re-computing the tag for M ′, t′′ = hp,s,z(M
′), and verifying

if the received tag t′ and the re-computed one t′′ are the
same:

δ = t′p,s,z ⊕ t′′p,s,z.
A non-zero syndrome δ indicates an error. Single-bit er-
rors can be corrected by checking if the δ matches one of
the columns of the parity check matrix P of the linear code
induced by the presented construction (explained in Sec-
tion 7). If the δ matches one of the columns of P , the cor-
responding bit in the received message is complemented.

5. SECURITY ANALYSIS
In this section, we analyze the security of MAC-C.

5.1 Detection of Malicious Errors
First, we derive a bound on the probability of not detect-

ing an error crafted by an adversary, i.e. the probability
that, after observing a message M and its tag t, the adver-
sary can find M ′ and t′ such that M ′ 6= M and t′ is a valid
tag for M ′. In this case, the error crafted by the adversary
will not be detected.

The following Theorem was proven in [16].

Theorem 1. [16] Let p(x) be an irreducible polynomial
of degree n over GF (2) and let s = (s0, s1, . . . , sn−1) be
an initial state of the LFSR with the generator polynomial
p(x). Let M be an m-bit message. Let λ1, λ2, . . . , λn be the
n different roots of p(x) over GF (2n). Then

hp,s(M) = BDM,pB
−1s

where B is a non-singular n × n matrix which depends on
p(x) only and DM,p is an n×n diagonal matrix with M(λi),
1 ≤ i ≤ n, as its diagonal entry.

Any primitive polynomial is irreducible. Furthermore, any
primitive polynomial of degree n has n different roots over
GF (2n) which all have order 2n − 1 [18]. Therefore, Theo-
rem 1 holds for the case when p(x) is a primitive polynomial
of degree n over GF (2) as well.

From this we can derive the following property of the hash
family H.

Theorem 2. For any hash function hp,s chosen uniformly
at random from the family H,

∀M 6= 0, ∀a ∈ {0, 1}n : Pr[hp,s(M) = a] ≤ m

φ(2n−1 − 1)
,

(4)
where φ is the totient function.

Proof: First, we observe that the truncation of the parity
check bit does not change the probability Pr[hp,s(M) = a].
Let h′p,s be an n − 1 bit hash value obtained by truncating
the parity check bit of hp,s. In other words, h′p,s is computed
as

h′p,s(M) =

m−1∑
i=0

Mi · (si si+1 . . . si+n−2).

for each primitive polynomial p(x) of degree n−1 overGF (2)
and each initial state s 6= 0. Then Pr[hp,s(M) = a] =
Pr[h′p,s(M) = a].

Next we estimate the probability that h′p,s(M) = a′ for
any a′ ∈ {0, 1}n−1, for a randomly chosen primitive polyno-
mial p(x) and an initial state s 6= 0.

Fix a message M 6= 0 and a′. We use the fact that the
polynomial M(x) corresponding to the message M has a
common root with p(x) if and only if p(x) divides M(x).
Consider two cases according to the value a′.
Case 1: Let a′ = 0. Since s 6= 0, then h′p,s(M) = 0 only
if DM,p is singular, since the matrices B and B−1 are not
singular. This can happen only if for some i, M(λi) = 0 or,
equivalently, only if p(x) divides M(x). The probability for
this to happen is at most the number of possible primitive
factors of M(x) divided by the total number of primitive
polynomials of degree n− 1.

Because of the unique factorization property, there are at
most m/(n − 1) primitive factors of M(x) each of degree
n − 1. On the other hand, the total number of primitive
polynomials of degree n−1 over GF (2) is φ(2n−1−1)/n−1.
Therefore

Pr[h′p(M) = 0] ≤ m

φ(2n−1 − 1)
.

Case 2: Let a′ 6= 0. Then h′p,s(M) = a′ only if DM,p is
non-singular and s is the unique vector which is mapped by
BDM,pB

−1 into a′. The vector s assumes this value with
probability of 1/(2n−1 − 1), and therefore Pr[h′p,s(M) =
a′] ≤ 1/(2n−1 − 1) for a′ 6= 0.

In both cases, Pr[h′p,s(M) = a′] ≤ m
φ(2n−1−1)

.
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The totient function φ(k), also called Euler’s totient func-
tion, is defined as the number of positive integers less than or
equal to k that are relatively prime to k (i.e. not containing
any factor in common with k):

φ(k) = {#n | n < k ∧ gcd(k, n) = 1},

where gcd stands for the greatest common divisor.
It is known that, if k is prime, then φ(k) = k−1. It is also

known that, if k is of type ka where k is prime and a > 0,
then φ(ka) = ka − ka−1. Another property which we use is
φ(2a − 1) ≥ φ(2a).

If 2n−1 − 1 is prime, then (4) reduces to

Pr[hp,s(M) = a] ≤ m

2n−1 − 2
.

Since φ(2n−1 − 1) ≥ φ(2n−1) = 2n−2, for a general case,
we can approximate (4) as:

Pr[hp,s(M) = a] ≤ m

2n−2
. (5)

5.2 Correction of Malicious Errors
An adversary may attempt to craft a multiple-bit error

which appears as a single-bit error to our message authenti-
cation algorithm. In this case, the algorithm will be tricked
to correct this error and accept the message after correction
as legitimate.

Such a situation may happen only if, after observing a
message M and its tag t, the adversary can find M ′ and
t′′ = t′ + v where t′ is a valid tag for M ′ and v is one of the
m vectors (si, si+1, . . . , si+n−2, ci) in the linear combination
(2) used to compute t′.

From the proof of Theorem 2, we know that Pr[hp,s(M) =
0] ≤ m

φ(2n−1−1)
and Pr[hp,s(M) = a] ≤ 1/(2n−1 − 1) for all

a 6= 0. Since none of m vectors (si, si+1, . . . , si+n−2, ci) in
the linear combination (2) repeats more than once, we can
conclude that the probability that an adversary succeeds to



craft a multiple-bit error which appears as a single-bit error
to our message authentication algorithm is at most εc, where
εc is given by

εc ≤
m

φ(2n−1 − 1)
+

m− 1

2n−1 − 1
. (6)

If 2n−1 − 1 is prime, then (6) reduces to

εc ≤
m

2n−1 − 2
+

m− 1

2n−1 − 1
≤ 2m− 1

2n−1 − 2
.

For a general case, we can approximate (6) as:

εc ≤
m

2n−2
+

m− 1

2n−1 − 1
≤ 3m− 1

2n−1 − 1
. (7)

6. ANALYSIS OF RANDOM ERRORS
In this section, we analyze properties of linear codes in-

duced by the presented construction.
It is easy to show that an (m+n,m) linear code with the

generator matrix G = [ImA] where A is of type (1) has the
code distance of at least 3. If A is of type (1), then the parity
check matrix P = [AT In] of the code does not contain any
0 columns and every column of P is distinct. This implies
that every pair of columns of P is linearly independent and
thus the code distance is at least 3.

A code with the code distance 3 can correct single-bit
errors. Furthermore, since the matrix A of type (1) contains
a parity check bit, such a code is capable of detecting all
errors affecting an odd number of bits. Next, we show that
it can also detect all burst errors of length n− 1 or smaller.
A burst error is an error affecting adjacent bits. Burst errors
are a dominant type of errors in data communication and
storage.

Theorem 3. An (m+n,m) linear code with the generator
matrix G = [ImA], where A is of type (1) detects all burst
errors of length n− 1 or smaller.

Proof: Suppose a burst error e of length n − 1 or smaller
occurred in a message M , i.e. the received message is of
type M ′(x) = M(x) + e(x), where e(x) is the polynomial
corresponding to the bit string e. Then the re-computed
check bits are given by the hash value

hp,s(M
′) =

m−1∑
i=0

(Mi + ei) · (si, si+1, . . . , si+n−2, ci)

= hp,s(M) +

m−1∑
i=0

ei · (si, si+1, . . . , si+n−2, ci).

The error e will not be detected only if

m−1∑
i=0

ei · (si, si+1, . . . , si+n−2, ci) = 0. (8)

Following the same reasoning as in the proof of Theorem 2,
we can conclude that the equation (8) holds only if De,p is
singular. This can happen only if for some i, e(λi) = 0. The
error polynomial e(x) has a common root with p(x) if and
only if p(x) divides e(x). This is not possible if the degree
of e(x) is smaller than the degree on p(x).

Since the error e is of length n− 1 or smaller, the degree
of e(x) is n − 2 or smaller. The degree of p(x) is n − 1.
Therefore, the error e will be detected.

2

g(si+1,...,si+n-2) 

 

si+n-2 

 

si 

 

si+1 

 

... ci 

 

LFSR 

+ 

Accumulator 

Message bits 

Switch is closed if  
message bit is 1, 
open if 0 

Parity 
bit 

+ 

... 

Figure 1: The computation of the hash function
hp,s(M) for a message M .

7. IMPLEMENTATION DETAILS
In this section, we show how MAC-C can be computed

efficiently.

7.1 Encoding/Decoding
The computation of the hash function hp,s(M) for a mes-

sage M can be efficiently implemented as shown in Figure 1.
The LFSR is initialized to the state s and the parity bit
computed for s. The LFSR advances its state which each
message bit. If the message bit is 1, the corresponding LFSR
state with its parity bit is accumulated into the accumulator
register. Otherwise, the state is not accumulated. The ac-
cumulator adds its input vector to the vector of its current
state, where the addition is the bitwise XOR. After m time
steps, the accumulator register contains hp,s(M).

Usually the generator polynomial of an LFSR is fixed and
therefore the circuit implementing it has hardwired feedback
connections. Implementation of hash functions in the pre-
sented method requires an LFSR in which the feedback con-
nections are programmable (and re-programmable), since
we should be able to change generator polynomials. Note
that some LFSRs used in non-cryptographic applications
also may use programmable connections, e.g. LFSRs im-
plementing CRC encoding which need to support different
CRC standards based on different generator polynomials [5].

The generator polynomial p(x) and the initial state s
should be changed periodically in such a way that the ma-
trix M which they induce appears randomly selected for an
adversary. In general, it is sufficient to compute a new gener-
ator polynomial and/or a new initial state at the beginning
of each session, and keep them fixed for all messages. The
pad z, however, has to be changed for every message.

Note that if encryption using a stream cipher is applied at
sender, pad z may be provided by the encryption function,
thus ”interleaving” encryption and authentication process-
ing. In this case, receiver may either (i) first remove pad z
by decrypting and then treat only hg,s(M) as tag, or (ii) not
remove pad z and treat hg,s(M)⊕ z as tag.

7.2 Error-Correction
Single-bit errors can be corrected by checking if the syn-

drome δ matches one of the columns of the n×(m+n) parity
check matrix P = [AT In] of the linear code induced by the



presented family of hash functions. If A is of type (1) then
AT is of type:

A =


s0 s1 . . . sm−1

s1 s2 . . . sm
. . .

sn−2 sn−1 . . . sm+n−3

c0 c1 . . . cm−1

 (9)

Thus, m columns of parity check matrix P correspond to the
m consecutive states of the LFSR starting from the initial
state s with the parity check bit appended:

(si, si+1, . . . , si+n−2, ci)

for i = {0, 1, . . . ,m− 1}.
Therefore, we can check if the syndrome δ matches one of

these states by initializing the LFSR to the state s and the
1-bit register to the parity bit of s, then clocking the LFSR
at most m times and, at each step i, comparing the n-bit
syndrome δ to the n-bit vector (si, si+1, . . . , si+n−2, ci):

ri = δ ⊕ (si, si+1, . . . , si+n−2, ci)

for i = {0, 1, . . . ,m− 1}, where ”⊕” is the bitwise XOR. As
soon ri = 0 for some i, the process stops and the ith bit of
the received message M ′ is complemented. A counter can
be used to keep track of the position of the erroneous bit i.

7.3 Computation of parity bit
Encoding of LFSR states in an even parity code can be

implemented using a single 2-input XOR gate and an addi-
tional 1-bit register as follows.

Let ci be the variable representing the value of 1-bit reg-
ister which stores the parity check bit of a current state
(si, si+1, . . . , si+n−2) of an (n− 1)-bit LFSR. At each clock
cycle, the value of the input bit of the LFSR is updated
using the feedback function

f(si, si+1, . . . , si+n−2) = si+g(si+1, si+2, . . . , si+n−2) (10)

where g(si+1, si+2, . . . , si+n−2) is determined by the genera-
tor polynomial of the LFSR and the rest LFSR’s bits update
their values as a shift from the previous bit. So, the parity
of the next state, ci+1, can be computed as

ci+1 = ci ⊕ si ⊕ f(si, si+1, . . . , si+n−2). (11)

From (10) we can conclude that si⊕f(si, si+1, . . . , si+n−2) =
g(si+1, si+2, . . . , si+n−2) and therefore (11) an be re-written
as

ci+1 = ci ⊕ g(si+1, si+2, . . . , si+n−2). (12)

So, to implement an even parity code, the 1-bit register
which stores the parity check bit of current state should
be updated at each clock cycle according to (12).

Note that the above construction assumes that, during
the initialization of the LFSR, the 1-bit register which stores
the parity check bit of the initial state is also initialized to a
correct pre-computed value. In other words, we require that
binary n-tuples which are used for the initialization of the
LFSR and the 1-bit register which stores the parity check
bit are drawn pseudo-randomly from the set of all possible
binary vectors of length n which have even Hamming weight.

8. SUITABILITY FOR 5G
In this section, we analyze pros and cons of two cases of

implementing integrity protection in 5G. We mainly focus

on LTE standard because, due to its relative complexity
compared to simpler standards like ZigBee, it brings more
issues. The two cases we consider are:

A) Using a 32-bit message authentication code MAC-I at
the PDCP layer, and

B) Using a MAC-C at the PHY layer.

Note that there are two corresponding cases for ZigBee [14],
where either Application Support Sublayer (APS), or Net-
work Layer (NWK), performs integrity protection using a
32-bit Message Integrity Code (MIC) similarly to the PDCP
layer of LTE. In ZigBee, the CRC is called Frame Check
Sequence (FCS) and it is 16-bit.

We first discuss implications of applying integrity protec-
tion at the PHY layer. Then, we estimate the size of MAC-C
required to get 32-bit security. Finally, we evaluate impact
on bandwidth.

Note that, in LTE, MAC-I is used for the control plane
signalling only. Data integrity at the user plane is not pro-
vided. This may change during the development of the 5G.
With radio access as a building block in, for example, indus-
trial automation, traffic control, smart grid, and e-health,
adding integrity protection to the user plane might become
a necessity.

8.1 Integrity Protection at the PHY Layer
We now analyze the architectural implications of applying

integrity protection at the PHY layer. In particular, start-
ing from the fact that, in LTE, PDCP provides integrity
protection, we investigate implications for security caused
by instead providing it at the PHY layer.

The protocol architecture in LTE places the security pol-
icy control in the Radio Resource Control (RRC) layer. RRC
starts security, changes keys, selects encryption algorithms
etc. The security policy enforcement is provided by PDCP
in the form of integrity protection and encryption. In the
original LTE architecture, RRC and PDCP is located in the
same node. More specifically, they are located in the same
secure environment.

With the introduction of the Dual Connectivity feature,
the protocol stack is allowed to be split in two parts. For the
control plane, all layers of the stack remain in the control-
ling part of the base station (eNB). However, for the user
plane, it is possible to locate the PDCP, Radio Link Control
(RLC), Medium Access Control (MAC) and PHY layers in
a separate part of the eNB, here called the controlled part.
The controlled part of the eNB may be physically separated
from the controlling part. As a result, RRC needs to pro-
vide key material to the PDCP entities in the controlled
part; this must be done over a confidentiality and integrity
protected link. Further, since the PDCP entities are located
in the controlled part of the eNB, they must also be enclosed
in a secure environment.

We assume a similar split in the 5G protocol architecture.
Applying integrity protection on the PHY layer then have
similar consequences as for the Dual Connectivity feature.
In fact, only considering the user plane, exactly the same
security architecture can be used. Considering the control
plane, the trust model must be altered under some circum-
stances though.

Should 5G require that RRC is integrity protected be-
tween the User Equipment (UE) and the controlling part
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Figure 2: Assumed protocol and security architec-
ture for 5G user plane (UP).

via the controlled part, applying integrity on the physical
layer implies that the protection can only be provided hop-
by-hop. That is, the RRC protocol is no longer protected
end-to-end between the UE and the controlling part. This
is the case even if the PDCP entity were located in the con-
trolling part (see Fig. 2). In fact, applying the integrity
protection on the PHY layer makes end-to-end protection
impossible in this setting. Moreover, this is a trust model
in which an operator needs to trust more entities compared
to LTE; the processing environment of the controlled part
and the protection of the link between it and the controlling
part must be trusted. Whether this trust model is applica-
ble or not, is heavily dependent on the trust one can put on
actual implementations of the secure environments in con-
trolled parts. It should be noted that the controlled parts
may for 5G not be full base stations, but could be cheaper
radio-heads. Such devices may become too expensive to be
commercially viable if there are too strict requirements on
their implementation. Bearing in mind that a breach of
the control plane security can be much more severe than a
breach of the user plane security, integrity protection at the
PHY layer might be not suitable for the control plan.

To summarize, the implications for security caused by pro-
viding integrity protection at the PHY layer seem to indicate
that, while integrity protection on the PHY layer is appro-
priate for the user plane of LTE, it may not fit the control
plane.

ZigBee standard supports multi-hop, i.e. packets can be
delivered from one node to another passing through multi-
ple radio hops. In this case, implementing integrity protec-
tion on the PHY layer of ZigBee raises problems similar to
LTE. However, ZigBee also supports direct communication.
In the direct communication mode, the FCS and the MIC
are checked by the same receiving node, enabling end-to-
end security also for the case when integrity protection is
performed on the PHY layer.

8.2 Soft Combining
In LTE, the actions taken to detect malicious and non-

malicious faults differ. Malicious fault detection is performed

MAC-C Message Failure probability
length length Error Error
n, bits m, bits Detection Correction

40 43 2−32.6 2−32

41 85 2−32.6 2−32

42 171 2−32.6 2−32

43 341 2−32.6 2−32

44 683 2−32.6 2−32

45 1365 2−32.6 2−32

46 2731 2−32.6 2−32

47 5461 2−32.6 2−32

48 10923 2−32.6 2−32

49 21864 2−32.6 2−32

50 43692 2−32.6 2−32

51 87384 2−32.6 2−32

52 174768 2−32.6 2−32

53 349536 2−32.6 2−32

54 699072 2−32.6 2−32

Table 1: Values of n and m required to provide 32-bit
security by MAC-C.

at the PDCP layer. If MAC-I verification fails, the PDCP
packet is not further processed.

Non-malicious fault detection is performed at the PHY
layer. If CRC check fails, the transport block may be kept
together with other re-transmitted versions for later process-
ing; this is called soft combining. Soft combining may suc-
cessfully restore a transport block from two or more trans-
port blocks with failed CRCs.

There are two ways to manage this situation when us-
ing a MAC-C at the PHY layer that detects both mali-
cious and non-malicious faults. First, taking a pure secu-
rity stance, one may propose that any transport block with
a failed MAC-C shall be discarded. This implies that soft
combining cannot be used and it may not acceptable from
a performance perspective. Second, one may propose that
the MAC-C of the reconstructed transport block shall be
verified again. It is important that the chosen way of recon-
structing transport blocks does not open up possibilities for
an attack. Consequences of reconstruction on security have
to be further explored.

ZigBee standard does not support soft combining, so this
problem does not arise. As described in the paragraph
5.2.1.9 of [14], MAC layer discards all the received frames
for which the re-computed and the received CRC values dis-
agree.

8.3 Replay Protection
Moving the integrity protection to the PHY layer also has

implications for replay protection. In LTE, replay protec-
tion is performed by a receiver at the PDCP layer. The
receiver of the PDCP packet essentially determines whether
the sequence number in the PDCP header has been received
previously. If that is the case, the packet is considered a
replay and is not further processed.

If we do integrity checking to the PHY layer, we no longer
have access to the sequence number in the PDCP packet
header. Even though the sequence number may be visible
at the PHY layer it would be a gross layer violation to access
it. Moreover, due to the fact that a PDCP packet can get
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Figure 3: Data flow through protocol layers of LTE; HX stands for the header of layer X.

segmented into multiple transport blocks (segmentation is
explained in more details in Section 8.5), each carrying its
own MAC-C, it is not guaranteed that each transport block
carries a PDCP sequence number that can be used for replay
protection.

To resolve this issue, one could instead base the replay
protection on the RLC sequence number which is included
in each transport block. The RLC sequence number should
then be extended with an overflow counter similarly to the
PDCP sequence number.

Similarly, in ZigBee, replay protection can be implemented
based on sequence numbers of NWK layer included in each
transport block.

8.4 Required Size of MAC-C
We have computed values of MAC-C length, n, and mes-

sage length, m, required to obtain 32-bit security provided
by the MAC-I or MIC. Table 1 shows the results. The 3rd
column shows the probability of not detecting an error com-
puted according to (5). The 4th column shows the prob-
ability of correcting wrongly an error computed according
to (7). For a given n in column 1, for all messages of length
smaller than m in column 2, the security higher than 32 bits
is guaranteed in both, error-detection and error-correction
cases.

In LTE, the maximum transport block size is 75k bits in
3GPP Release 8 and 391k bits in 3GPP Release 13 [11].
Assuming that the size of the maximum transport blocks
used in 5G mobile broadband will not exceed 699k bits, a 54-
bit MAC-C is sufficient to provide 32-bit security of MAC-I.

In ZigBee, the maximum PHY Service Data Unit (PSDU)
size is 2014 bytes (16112 bits) for Smart Utility Networks
(SUN) PHY layer and 127 bytes (1016 bits) of other PHY
layers [14]. So, MAC-C of size 49 bits and 45 bits, respec-
tively, is sufficient to provide 32-bit security of MIC.

8.5 Impact on Bandwidth
To estimate impact on bandwidth for both cases, we need

to analyze the flow of data through protocol layers. Figure 3
shows the diagram of LTE protocol stack for the control
plane. In the case A when a 32-bit MAC-I at the PDCP
layer is used for integrity protection at the user plane, the
data flow will look the same.

If the data integrity is protected at the PDCP layer, then
a 32-bit MAC-I is appended to the packet coming from the
layer above, as shown in Figure 3. In addition, a PDCP
header is added and the result is submitted to the RLC

layer.
RLC layer concatenates or segments the packets coming

from PDCP layer into a size appropriate for transport blocks
and forwards it to the MAC layer with its own header. Con-
catenation is performed when the PDCP packet is small
compared to the available radio data rate (resulting in large
transport blocks). Segmentation is done when the PDCP
packet is large compared to the available radio data rate
(resulting in small transport blocks). Both concatenation
and segmentation may be performed to form a transport
block, as shown in Figure 3.

MAC layer adds its own header, and performs padding to
fit a packet in a transport block. Finally, MAC layer submits
the result to the PHY layer.

At PHY layer, a 24-bit CRC is appended to the transport
block and the block is transmitted into physical channels.

We can conclude that, in LTE, if we replace a 24-bit CRC
and a 32-bit MAC-I by a 54-bit MAC-C, then the difference
in bits per transport block is given by N ·32−30, where N is
the number of occurrences of MAC-I in the transport block.
So, for all N > 0, we save 2 + 32 · (N − 1) bits. The case of
N = 0 occurs when a PDCP packet has to be splitted into
two or more segments to fit the transport block and at least
one of these segments occupy the complete transport block
and does not contain MAC-I.

Similarly to LTE, ZigBee supports fragmentation an re-
assembly at the ASP layer [29], so a PSDU may potentially
contain from zero to several MICs. In the case of SUNs, if
we replace a 16-bit FCS and a 32-bit MIC by a 49-bit MAC-
C, the difference in bits per PSDU is N · 32 − 33, where N
is the number of occurrences of MIC in PSDU. For a 45-bit
MAC-C, we get N · 32− 29.

In conclusion, although we have given a concrete formula
to calculate the bandwidth gain of the presented method, it
is difficult to determine whether this gain will be substan-
tial in practice. The main reason for this is that there are
too many parameters affecting N to be able to describe a
typical situation. For example, in LTE, the transport block
size depends on the modulation and coding scheme and the
number of resource blocks assigned to the UE. These in turn
depend on distance from the eNB, quality of coverage, size
of the data being transmitted, etc. Parameters vary widely
over time, from user to user and depending on geographical
location.

9. RELATED WORK
Message authentication codes have also been thoroughly



investigated in the past, see Simmons for an excellent sur-
vey [20].

Carter and Wegman [26] were first to show that hash
functions can be combined with one-time pads to construct
strong authentication algorithms. Their approach was fur-
ther developed by Brassared [7], Desmedt [8] and Krawczyk
[16].

Stinson [22] introduced the notion of almost strongly uni-
versal hash families which helped reduce the key size of un-
conditionally secure MACs proposed earlier by Gilbert et
al. [13].

To our best knowledge, the use of error-correcting codes as
MACs was first proposed by T. Johansson et al. in [15] and
the first construction of universal families of hash functions
via codes was presented by Bierbrauer et al. in [4].

The relation between error-correcting codes and hash func-
tions has been further investigated by Stinson in [23]. Black
et al. have shown that universal hash families can be ap-
plied to construct efficient computationally secure MACs,
e.g. UMAC [6]. Computationally secure MACs are used in
3G wireless communication.

Building up on the work of Krawczuk [16], MACs based
on BCH and Reed-Solomon error-correcting codes capable
of correcting two bit errors have been presented in [17]. Al-
though more powerful than our construction in terms of
the number of corrected bits, these MACs require a heavier
error-correction scheme.

Fuzzy or approximate MACs with the property that a
message will pass the authenticity check if it has less than
a certain small number of errors have been presented in [28,
12, 27, 24, 25]. Approximate MACs are an interesting con-
cept and they are very valuable for applications where some
noise is acceptable, e.g. multimedia (image, video, etc.) or
biometrics authentication. However, they simply ignore er-
rors rather than correct them, as the MAC presented in this
paper.

A number proposals to replace the traditional CRC check-
sum with a cryptographically secure CRC have been made,
including [16, 10, 9]. These MACs can detect random and
malicious errors, but they cannot correct them.

10. CONCLUSION
In this paper, we introduced a new type of MACs, MAC-

C, based on linear codes with code distance 3 and performed
a quantitative analysis of the its security.

We conclude that MAC-C seems a good candidate for sim-
pler 5G radio types, such as the ones used for direct commu-
nication in sensor networks, and use cases with constrained
resources such as MTC. In these simpler types of 5G radios,
FEC and soft-combining are typically not used and therefore
the issues we discussed in Section 8 do not arise.

MAC-C appears less suitable for the 5G mobile broad-
band, unless the issues we discussed in Section 8 are resolved.
We are currently working on these problems.
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