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Abstract—We describe our experiences from using formal
verification tools during the standardization process of Dual Con-
nectivity, a new feature in LTE developed by 3GPP. To the best
of our knowledge, this is the first report of its kind in the telecom
industry. We present a model for key establishment of this feature
and provide a detailed account on its formal analysis using
three popular academic tools in order to automatically prove
the security properties of secrecy, agreement and key freshness.
The main purpose of using the tools during standardization is to
evaluate their suitability for modelling a rapidly changing system
as it is developed and in the same time raising the assurance level
before the system is deployed.

I. INTRODUCTION

a) Background: Research on formal verification of se-

curity protocols has been ongoing for two decades. State of

the art academic tools like ProVerif [1] can verify protocols

for unbounded number of runs and communicating peers.

However, in many places where new security protocols are

continuously designed, e.g., the telecom and internet standard-

ization industry, the use of formal methods has not yet caught

on. One possible reason is the fact that existing tools require

security protocols to be modeled at a too high abstraction level.

However in practise, it is often the case that the specifications

of security features are deeply intertwined with low level

details of the system. Another possible reason could be that

during a standardization process, the protocol under study

is constantly evolving. In fact it is common that changes

and additional features are proposed, evaluated and possibly

adopted during the process. In this paper, we investigate this

on an industrial case study.

b) Contribution: We consider Dual Connectivity (DC)

[10] (TS 33.401) for a terminal, a feature recently introduced

by the 3rd Generation Partnership Project (3GPP) in the Long

Term Evolution (LTE) standards. This feature allows a termi-

nal such as a mobile phone to be connected to two base stations

simultaneously. We present a model for the key establishment

of DC and provide a detailed account on our experience using

three academic tools for the formal analysis of the model. This

account includes insights on the modeling and the attempts to

adapt to the input languages, the results of the verification and

our evaluation of the tools with respect to different parameters

such as expressiveness, usability and performance. The tools
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we consider are Scyther [2], Tamarin [3] and ProVerif . To

the best of our knowledge there has been no reports, so far,

on the use of formal verification tools to support ongoing

standardization process in the telecom industry.

First, we give an overview on security in LTE networks.

c) LTE Security: LTE is the most recent standard

developed by 3GPP for the 4th Generation (4G) mobile

communication systems. Among the objectives of LTE is to

provide at least as good security as previous generations. For

this purpose, LTE introduces a key hierarchy and mandates

the use of specific keys from the hierarchy for each protocol

between the terminal and the nodes in the network. At the

root of the hierarchy is the key provided by the operator and

securely stored in a smart-card. Each key in the hierarchy

is shared between the terminal and a particular node. For

example, the terminal and the base station serving as an access

point to the terminal share a key called KeNB. eNB stands for

evolved NodeB and denotes base stations in LTE terminology.

Keys like the KeNB are typically used to derive ciphering and

integrity protection keys in order to secure the communication

between the terminal and a node in the network.

The LTE standards describe procedures for the establish-

ment of the keys in the hierarchy. It is common that these pro-

cedures share the following pattern: Starting from an already

established key, for example a KeNB, the procedures establish

a new key between the terminal and a target node, for example

a new eNB during a handover. Such procedures typically have

to satisfy at least the following security properties: agreement,

secrecy and freshness. Agreement guarantees that the involved

peers obtain the same key at the end of the run. Secrecy

guarantees that no one, other than the involved peers, obtains

the key. Finally freshness prevents key re-use.

d) Related work: Some recent work such as [4] and [5]

is promoting the use of formal methods during the security

standardization of communication systems. Most published

work on formal analysis of telecom protocols is performed

after the standardization and when the equipment has already

been built and deployed. This is the case for the Authentication

and Key Agreement (AKA) protocol [6]–[8]. All of that work

focus on key establishment, whereas we include aspects of the

security of the system related to the use of the established keys

as well. The only public use of formal methods during telecom

standardization that we are aware of is the work done by the

USECA [9] project on WCDMA [10] (TR 33.902) where the

BAN logic [11] is used without tool support to prove some



properties of AKA.

There are several case studies using the tools we consider.

The Scyther tool has, for example, been used for the analysis

of the Naxos protocol [12], the IPsec exchange protocols

IKEv1 and IKEv2 [13], some security features in WiMAX [14]

and [15]. Case studies using the ProVerif tool include the

analysis of the Bluetooth device pairing protocol [16], the just-

fast-keying protocol [17], the secure file sharing protocol in

Plutus file systems [18], authentication in 3G where both GSM

and WCDMA access is used [7], some of the LTE security

procedures [19], and a privacy study on WCDMA [20]. The

Tamarin tool has been used for the verification of group key

agreement protocols [21], as well as TLS, TESLA and other

protocols [3].

The work in [22] provides a comparison of several tools

including also Scyther and ProVerif , in addition to the

AVISPA tool suite [23]. This study focuses on performance

and particularly on state space coverage. Furthermore, it relies

on purely academic protocol examples such as the Needham-

Schroeder protocol.

II. DUAL CONNECTIVITY

There are two architectural options for DC, but in the

following we will only consider one of them since the other

does not require any new security features.

There are two eNBs involved in DC. One of them maintains

control of the radio resource management, and is called a

Master eNB (MeNB). The MeNB controls the other eNB,

which is called the Secondary eNB (SeNB). According to the

trust model, the MeNB and SeNB communicate over a secure

channel; that is, communication between the two is integrity

protected, replay protected and encrypted. This is also the case

for the communication between the MeNB and the terminal.

Furthermore, the trust model assumes that none of the entities

can be compromised.

The security parameters in the MeNB include the KeNB

shared with the terminal and the list of encryption algorithms

identifiers supported by the terminal. The KeNB is the root

of key hierarchy for DC. In case it is compromised, all keys

derived from it, including any future keys for offload, would

also be compromised. This motivates why the trust model

assumes that the MeNB nodes cannot be compromised.

In general, all radio control traffic between a terminal and

an eNB is transported over a signalling radio bearer, which is

transported over a secure channel. Data traffic is transported

over Data Radio Bearers (DRB). Each such radio bearer has

a unique identifier. In DC, the terminal maintains one radio

control connection with the MeNB, but can have multiple

data bearers established with both the MeNB and SeNB.

Regardless of whether they are signalling or data radio bearers,

the same encryption key is used for all of them. To ensure

that the traffic on each bearer is encrypted using a unique key

stream, the identifier of the radio bearer is included in the

initialization vector of the encryption algorithm.

In order to keep track of the used bearers, the MeNB

maintains a counter called Small Cell Counter (SCC). When

the MeNB offloads a first DRB between the SeNB and the

terminal, the MeNB derives a key called S-KeNB, from the

KeNB and the SCC. All keys are generated using a key

derivation function denoted by KDF. The MeNB then sends

to the SeNB a message containing the newly derived S-KeNB,

the identifier of the DRB to be used, and the list of identifiers

for the encryption algorithms that the terminal supports (step

1 in Fig. 1). Upon reception of this message, the SeNB

first configures the DRB and selects an algorithm from the

list. Second, using the selected algorithm and the received

S-KeNB, the SeNB derives the actual encryption key KUPenc.

Last, the SeNB sends the selected algorithm identifier to the

MeNB (step 2). The MeNB forwards the received algorithm

identifier together with the SCC and the DRB identifier to the

terminal (step 3). The terminal, now in possession of all the

required parameters, derives the S-KeNB and the encryption

key KUPenc in a similar manner to how it is done in the other

nodes. Observe that in Fig. 1, we include the DRB identifier

in the derivation of KUPenc. This is not the case in reality,

since the identifier is supposed to be used in the initialization

vector of the encryption function. On the other hand all these

steps, i.e. the key derivation followed by the encryption, are

performed internally by the same trusted entity and thus can

be considered as a single atomic step. In this regard, our way

of modeling is sound.

When the MeNB attempts to offload an additional DRB

and there are unused DRB identifers, it does not derive a fresh

S-KeNB. Instead, the MeNB offloads a new DRB to the SeNB

without sending neither an S-KeNB nor an SCC (step 5). When

the SeNB does not receive any S-KeNB, it configures the new

DRB using the same KUPenc as all existing DRBs for this

terminal. To the terminal, the MeNB sends only the new DRB

identifier as well (step 6). The additional KUPenc derivations

in after setp 6 in Fig. 1 are due to our way of modeling the

usage of the DRB identifiers as explained above. In absence

of an SCC in step 6, the terminal re-uses the existing S-KeNB.

The set of DRB identifiers is finite and hence it is possible

that the MeNB attempts to offload a DRB while all identi-

fiers have previously been used. In this situation, the MeNB

increments the SCC and derives a new S-KeNB as if this was

an initial offload. The only difference is that no algorithm

identifier selection is required (step 8 and 9). In case the

SeNB have already active DRBs for the terminal, the SeNB

reconfigures all these DRBs to use an encryption key based

on the new S-KeNB. Since the model is mainly capturing

the key establishment it does not include subsequent data

transmissions apart from what is needed to verify agreement

(step 4, 7 and 10). Modeling further data transmissions on

DRBs and offloads complicates the model without adding any

substance. Therefore we don’t include the reconfiguration of

existing DRBs in the model of Fig. 1.

III. MODEL IMPLEMENTATIONS

We consider the Scyther, Tamarin and ProVerif tools

for the formal verification of DC. All of these tools can
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Fig. 1. Dual connectivity reference model.

achieve unbounded verification, i.e., they can prove the se-

curity properties for an unbounded number of agents and

protocol runs. From an input language perspective, the tools

support different level of abstraction where Scyther has the

highest one and Tamarin the lowest. The tools implement the

symbolic Dolev-Yao attacker model [24], with extensions such

as agent compromise and secure channels. The problem is in

general undecidable [25] so the tools may not terminate, return

false attacks or terminate with inconclusive results.

In the following sections we describe how we implement the

DC reference model of Fig. 1 using each tool. The goal is to

automatically verify the secrecy and freshness of the KUPenc

key, and the agreement between the terminal and the SeNB

on the selected encryption algorithm and KUPenc. For shortage

of space, the full versions of the models that can be used to

reproduce our results are not included. They are available on

demand.

A. Scyther

Scyther uses a backward search algorithm based on a sym-

bolic representation of sets of protocol runs [26], an extension

of the strand spaces [27]. A Scyther protocol model consists

of a set of roles where each role is a list of events. There can

be communication events (send and receive) and match events.

Pattern matching is used in all events to enforce the structure

and types of the arguments. The tool provides built-in types for

modeling usual entities such as agents, nonces and keys. It has

also support for user-defined ones. Cryptographic primitives

are implemented by symbolic functions with predefined public

and symmetric key infrastructures. Security properties are

expressed by claim events within the roles.

Listing 1 includes all the declarations of the Scyther model.

1 hashfunction kdf ;
2 usertype Alg ; const alg −1, alg −2: Alg ;
3 usertype Counter ; const scc−1: Counter ; const i nc : Function ;
4 usertype Bearer ; const drb−1, drb−2: Bearer ;

Listing 1. The declarations of the Scyther model

Most of the keywords are self-explanatory. Declarations pre-

ceded by const are public and thus known to the attacker.

Since there is no support for complex data structure such as

sets or lists, we assume a fixed set of predefined DRB iden-

tifiers listed in line 4. The terminal cryptographic capabilities

are modeled in a similar manner (line 2). For the SCC, we

use a constant to represent the initial value and a function to

model the increment operation (line 6).

Listing 2 shows the MeNB role. The initial offload steps

are implemented in lines 6-8. Lines 9-10 model one bearer



addition operation. In fact, because there is no support for

control flow structures such as loops and conditionals, we

unroll the bearer addition loop in the implementation. For that

we assume a fixed number of possible identifiers, in our case

two (drb-1 and drb-2), and hence we only need to model

one iteration of the loop since by then all available bearers

would have been used. The remaining lines (12-13) are for

the session key update steps. Observe that one can extend

the role by alternating the bearer addition and key update

steps resulting in an arbitrarily large model. For performance

reasons, we consider this limited model as we could not get

better results (termination) with larger ones.

1 protocol dc (MeNB, SeNB, UE)
2 {
3 role MeNB {
4 var a : Alg ;
5 macro skenb−m−1 = kdf ( k (MeNB, UE) , scc−1) ;
6 send 1 (MeNB, SeNB, {skenb−m−1, ( alg −1, alg−2) , drb−1}k (

MeNB, SeNB) ) ;
7 recv 2 (SeNB, MeNB, {a}k (MeNB, SeNB) ) ;
8 send 3 (MeNB, UE, {scc−1, a , drb−1}k (MeNB, UE) ) ;
9 send 6 (MeNB, SeNB, {drb−2}k (MeNB, SeNB) ) ;

10 send 7 (MeNB, UE, {drb−2}k (MeNB, UE) ) ;
11 macro skenb−m−2 = kdf ( k (MeNB, UE) , i nc ( scc−1) ) ;
12 send 10 (MeNB, SeNB, {skenb−m−2, drb−1}k (MeNB, SeNB) ) ;
13 send 11 (MeNB, UE, { i nc ( scc−1) , drb−1}k (MeNB, UE) ) ;
14 claim MeNB1 (MeNB, Reachable ) ;
15 }
16 role SeNB { . . .

Listing 2. The MeNB role in the Scyther model

Communication events take three arguments where the first

two specify the involved roles and the third one is the actual

message. For example the receive event of line 8 denotes

that the MeNB receives from the SeNB a value of type

Alg to be stored in the variable a encrypted with the shared

key k(MeNB,SeNB). Scyther does not include a primitive

for secure channels. Encryption and integrity protection are

supported in Scyther and thus can be easily added in the

model. The replay protection is, however, more complex to

model when counters cannot be used. Although it is possible to

make a construction based on nonces, the required additional

message exchange would most likely impede on the tool’s per-

formance. In our case only encryption is added to preserve at

least confidentiality since otherwise, all the security properties

would trivially fail. A direct consequence of the lack of replay

protection is that Scyther fails to prove agreement and reports

instead false attacks as one would expect.

For the algorithm selection step, the SeNB always replies

with the same fixed value in the current model. This is because

there is no support for choice. Nevertheless, it is possible

to have several Scyther models for each possible algorithm

value, but in this particular case they would be all equal up

to the names of the algorithm constants. Our model is in fact

independant of the names and therefore this is not needed.

Listing 3 shows the security claims in the end of the terminal

role. The variable kupenc-u-3 denotes the KUPenc obtained

in the session key update phase. Verification of agreement

on the newly established key KUPenc and the encryption

algorithm, denoted by a in the model, requires an additional

message exchange using this key (lines 4-5). The agreement

claims (lines 3 and 6) are added accordingly as described

in [28]. For secrecy of the key, we add a claim on the secrecy

of the exchanged encrypted data (line 7). The reachability

claim of line 8 is a sanity check. The tool will attempt to

generate a trace that reaches the claim. This proves that the

model can be fully executed and that there are no blocking

events in the middle of the roles. The last two steps (lines

9-10) are a workaround for checking freshness. The variable

kupenc-u-2 denotes the KUPenc obtained during the bearer

addition phase. If Scyther cannot prove the last reachability

claim (line 10), then this implies that it could not get passed

the match event (line 9) and hence the keys are different. This

is because a match event, in case its arguments are not equal,

leads to the immediate termination of the role instance without

executing the remaining events.

1 . . .
2 fresh data : Nonce ;
3 claim UE7 (UE, Running , SeNB, kupenc−u−3, a ) ;
4 send 12 (UE, SeNB, {data}kupenc−u−3) ;
5 recv 13 (SeNB, UE, {data}kupenc−u−3) ;
6 claim UE8 (UE, Commit , SeNB, kupenc−u−3, a ) ;
7 claim UE9 (UE, Secret , data ) ;
8 claim UE10 (UE, Reachable ) ;
9 match ( kupenc−u−3, kupenc−u−2) ;

10 claim UE11 (UE, Reachable ) ;
11 }

Listing 3. Last part of the terminal role in the Scyther model

B. Tamarin

Like Scyther, Tamarin also exploits strand spaces but relies

on a constraint solving algorithm to verify the properties.

Protocols are modeled as multiset rewrite systems [29]. This

representation relies on facts and transitions. Facts are special

symbols that can be applied to messages like functions are

but not recursively. They can be freely introduced with the

exception of few fact symbols used for example to model send

and receive operations. The transitions are used to model the

protocol behavior and the attacker actions.

A transition is defined by three sequences of facts: the left-

hand side (LHS), the labels and the right-hand side (RHS) as

shown in Listing 4. Executing a transition consumes all facts

in the LHS, produces the ones in the RHS and emits the label

facts as events. In the listing below, Fr and Ltk are facts;

ltk, A and B are variables; and h is a (hash) function. The Fr,

Out and In are built-in facts used respectively for creating

fresh values, sending and receiving messages. Persistent facts

are preceded by ! and can always be used in transitions

without being consumed. Prefixes are used to denote the types

of variables. In particular ˜ and $ denote respectively a fresh

and a public variable. The transition of Listing 4 models shared

key provisioning. More precisely, upon its execution, a new

fresh name ltk is generated. Then it is used for the creation of

a key h(ltk). Finally, it is associated non-deterministically

with two public values A and B representing agent identifiers.

rule KeyProv :
[ Fr ( ˜ l t k ) ] −−> [ ! L tk ($A , $B , h ( ˜ l t k ) ) ]

Listing 4. Key provisioning in the Tamarin model



Listing 5 contains the transitions implementing the initial

offload of the MeNB role. Many of the limitations of the

Tamarin language are dealt with in a similar manner to how

it is done for Scyther. For instance, since there is no support

for secure channels, all communication between the terminal

and the MeNB and between the SeNB and MeNB is only

encrypted. For that additional keys are used: kenb (line 4)

and kx2 (line 7). Furthermore, the algorithmic capabilities

(line 9) and the bearers (line 5) are represented by public

constant values. Finally, the SCC initially set to ’1’ (l3),

is incremented by the built-in operation + though this is just

syntactic sugar for usual functions.

Facts like MeNBSession (lines 8 and 10) can be used to

store session data, in this particular case: the KeNB, SCC,

DRB identifier and the additional encryption key kx2. They

can also be used as control states in the rules. This allows for

modeling arbitrary control flows.

1 rule MeNB In i t ia l Of f load 1 :
2 l e t
3 scc = ’1 ’
4 skenb = kdf(<kenb , scc>)
5 drb = ’ drb1 ’
6 in
7 [ ! L tk (MeNB, SeNB, kx2 ) , ! L tk (MeNB, UE, kenb ) ] −−>
8 [ MeNBSession ( kenb , kx2 , scc , drb ) ,
9 Out ( senc{skenb , <’alg1 ’ , ’ alg2 ’> , drb}kx2 ) ]

10 rule MeNB In i t ia l Of f load 2 :
11 [ MeNBSession ( kenb , kx2 , scc , drb ) , In ( senc{alg}kx2 ) ] −−>
12 [ Out ( senc{scc , alg , drb}kenb ) ]

Listing 5. The MeNB rules in the Tamarin model

The algorithm selection operation is modeled by two rules

for the SeNB with the same RHS such that the effect is that

the SeNB chooses non deterministically from the tuple. In

Listing 6, one of the rules is shown. The other one is obtained

by replacing alg1 by alg2 in the label and the LHS.

1 rule SeNB In i t ia l Of f load 1 :
2 l e t
3 kupenc = kdf(<skenb , alg1 , drb>)
4 in
5 [ ! L tk (MeNB, SeNB, kx2 ) , In ( senc{skenb , <alg1 , alg2>, drb}

kx2 ) ]
6 −−[SeNBRunning ( kupenc , alg1 )]−>

7 [ SeNBSession ( kx2 , skenb , alg1 , drb ) , Out ( senc{alg1}kx2 ) ]

Listing 6. One of the SeNB selection rules in the Tamarin model

The security properties are first order formulas of label facts

over the protocol traces with support for quantification over

the positions (in the traces). This provides enough expressive

power to represent all the properties that we want to verify.

Listing 7 shows how the freshness property is defined. The no-

tation Ex denotes the existential quantifier and #i a temporal

variable (for trace positions). The lemma expresses that there

should be no two occurrences of the SessionKey label fact

with the same key k.

lemma key freshness :
not (Ex k # i # j . SessionKey ( k ) @ i & SessionKey ( k ) @ j & i

< j )

Listing 7. The key freshness lemma in the Tamarin model

C. ProVerif

ProVerif translates protocol models to Horn clauses which

are then subject to a resolution algorithm. The tool relies on

an approximation [1] that enables unbounded verification. The

input language of ProVerif is a typed variant of the applied

pi calculus [30]. The complete specification can be found in

the user manual [31]. A protocol model consists of a set of

process macros representing each a particular role. Each macro

is a sequence of events. As an example, Listing 9 shows the

process macro of the MeNB role.

Security properties are expressed as queries on the attacker

knowledge, or on arbitrary user defined events that are added

in process macros in a similar manner to how claims are added

in Scyther models. ProVerif can prove reachability properties

and correspondence assertions [32] related to such events.

Correspondence properties are of the form “if some event is

executed, then another event has previously been executed”,

and can be used for checking various types of agreement

properties [28].

Unlike the other tools, ProVerif provides support for secure

channels and for better modeling of capabilities. In Listing 8,

mem (line 3) denotes the set membership predicate where the

arguments a and uecaps are of types representing respectively

algorithms and algorithm sets. The event in line 3 binds the

new name a to a value satisfying the predicate in the remaining

events. This models the selection operation performed by the

SeNB upon reception of the terminal capabilities.

1 l e t SeNB( ) =
2 in ( secch , (=OFF, skenb : key , uecaps : algs , drb :

b i t s t r ing ) ) ;
3 l e t a : a lg suchthat mem( a , uecaps ) in
4 out ( secch , (OFF, a ) ) ;
5 . . .

Listing 8. A sample from the SeNB process macro in the ProVerif model

Without the support for counters, the SCC and DRB are

modeled by constants in a similar manner to how it is done

in the Scyther model.

Each process macro is split in three separate phases (lines 6

and 8). This is a feature used to restrict process executions by

preventing the execution of events of a phase until all the other

processes have executed all the events of the previous phases.

Using this feature, we group the steps for initial offload (lines

2-5), the steps for bearer addition (line 7) and the steps for

session key update (lines 9-12) in 3 different phases. We then

aim to prove secrecy and agreement on the established key

and algorithm choice in each phase.

1 l e t MeNB( kenb : key , uecaps : a lgs ) =
2 l e t skenb : key = kdf ( kenb , c t o b s t r (SCC1) ) in
3 out ( secch , (OFF, skenb , uecaps , DRB1) ) ;
4 in ( secch , (=OFF, a : a lg ) ) ;
5 out ( secch , (OFF, SCC1, a , DRB1) ) ;
6 phase 1;
7 out ( secch , (ADD, DRB2) ) ;
8 phase 2;
9 l e t skenb 2 : key = kdf ( kenb , c t o b s t r ( i nc (SCC1) ) ) in

10 out ( secch , (RFR, inc (SCC1) , DRB1) ) ;
11 out ( secch , (RFR, skenb 2 , DRB1) ) ;
12 event menbReachable ( ) .

Listing 9. The MeNB process macro in the ProVerif model

Communication is modeled by the in and out events (such

as in lines 3-4). Such events take two arguments representing

the communication channel and the message. In message



TABLE I
VERIFICATION RESULTS

Tool Scyther Tamarin ProVerif

Secrecy + + ++

Freshness + + -

Agreement - - ++

TABLE II
TOOL EVALUATION

Tool Scyther Tamarin ProVerif

Usability ++ + +

Expressiveness - ++ -

Performance + - ++

tuples, the first element is reserved for constants modeling

message headers (OFF, ADD and RFR). Although this does not

appear in the reference description of Fig. 1, it is a good

practise when working with ProVerif . In fact ProVerif uses

pattern matching when evaluating received messages so the

pattern = OFF in line 4 matches only messages with the OFF

header. This has the effect of restricting the number of feasible

traces and hence increasing the chances for termination. It is

also in line with real implementations that do check the type

of received messages.

IV. DISCUSSION

A. Verification Results

All the verification results are summarized in Table I. We

used a laptop with an i5 Intel processor on which we executed

the tools in a 1GB virtual machine running a 32 bit version

of Linux. The convergence times where in the worst case in

the order of two hours. The verification with the Scyther and

Tamarin tools provided weaker results as all the properties

could only be proven in the bounded models. In fact both

tools have support for bounded verification. For the Scyther

tool the user specified bound puts a limit on the number of

runs. For Tamarin on the other hand, the limit is on the proof

depth and it is not clear to us how to relate it to the protocol

parameters. We admit this was a setback since our choice of

the tools was in the first place partly motivated by their ability

to deliver unbounded verification.

B. Tool Evaluation

In Table II, we compare the tools on three different di-

mensions: Usability (ease of use), expressiveness of the input

language, and performance. We emphasize that this particular

industrial case study does not exploit all the capabilities of the

tools. Nevertheless, DC exhibits patterns and relies on features

that are common in telecom security procedures.

On the usability dimension, we consider Scyther to be

the most user-friendly tool for its simple input language and

graphical interface. The Tamarin tool has also a graphical in-

terface but requires that the user is familiar with some aspects

of its theoretical foundation. The ProVerif tool is provided

with an extensive tutorial which we believe compensates for

the lack of gui-support to a great extent. For the performance

dimension, there were no considerable differences in con-

vergence times. Nevertheless ProVerif has a clear advantage

since for Scyther and Tamarin convergences could only be

achieved in the bounded models.

On the expressiveness dimension, Tamarin provides sup-

port for arbitrary control flow structures such as loops and

conditionals. ProVerif offers a good compromise between lan-

guage expressiveness and performance but in general because

of the lack of support for global state, in both ProVerif and

Scyther, we could not properly model the bearer addition

loop of DC. Neither could we express the freshness property

for these tools. The workaround described in Section III-A

requires polynomial number of models to test equality between

all possible pairs of the generated encryption keys. Finally, the

lack of support for secure channels in Scyther and Tamarin

poses a problem for agreement properties.

C. Applicability During Standardization

Most parts of DC as described here were agreed on

relatively early in the standardization process. Nevertheless,

other variations of the design were discussed afterwards that

the model could not easily cater for. For example, it was

discussed whether the same encryption key should be used

for all DRBs in the SeNB, or the SeNB should reconfigure

all existing DRBs when a new S-KeNB is received from the

MeNB. This is a quite typical exercise where tool support

would simplify such decisions and increase the assurance level

in a standardization process. In our case, this would require

modeling lower level details of user plane encryption than the

tools can handle.

None of the tools were able to verify the freshness property

in the unbounded modification model. In fact, only Tamarin

has support for the required modeling features, namely coun-

ters and loops. For the other tools, we had to resort to

unrolling the bearer addition loop. In addition to counters,

other constructions such as finite sets, e.g., for the bearer and

encryption algorithm identifiers, are very common in access

network security protocols. Most of the case studies for the

tools under consideration are targeted at protocols where state

changes are not preserved between runs. This is however the

most common case in many security systems, such as telecom

networks.

Another variation discussed was whether the SCC should

be a counter or a random nonce. The choice fell on a counter

due to the possibility that a nonce may repeat. In fact, despite

being called nonces, in real systems they have finite domains.

The counter on the other hand is predictable by an attacker.

Since all the tools are based on a symbolic attacker model,

it cannot be expected that probabilistic and computational

attacker capabilities are taken into account.

V. CONCLUSION

In this work, we considered the security aspect of Dual

Connectivity, a new LTE feature ongoing standardization. We

described a model for the key establishment in this feature

and formally analyzed it using the Scyther, Tamarin and



ProVerif tools. Our goal was to automatically prove secrecy,

agreement and freshness of the established key. None of the

tools provide alone full support for all the features in this

case study, but used in combination as we did would be a

good practice in standardization processes in order to increase

the assurance in proposed designs. The process of formal

modeling in itself helps in that one have to reflect on every

design choice and clearly formulate the security goals.
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