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Abstract. Software is today often composed of many sourced compo-
nents, which potentially contain security vulnerabilities, and therefore
require testing before being integrated. Tools for automated test case
generation, for example, based on white-box fuzzing, are beneficial for
this testing task. Such tools generally explore limitations of the spe-
cific underlying techniques for solving problems related to, for example,
constraint solving, symbolic execution, search heuristics and execution
trace extraction. In this article we describe the design of OpenSAW, a
more flexible general-purpose white-box fuzzing framework intended to
encourage research on new techniques identifying security problems. In
addition, we have formalized two unaddressed technical aspects and de-
vised new algorithms for these. The first relates to generalizing and com-
bining different program exploration strategies, and the second relates to
prioritizing execution traces. We have evaluated OpenSAW using both
in-house and external programs and identified several bugs.

1 Introduction

Background Dynamic test generation is a testing technique where the test in-
puts are automatically generated while running the System Under Test (SUT)
in a continuous loop. In each iteration, the new test input is generated based
on information collected during the execution of the SUT on previously gener-
ated input. When the SUT is an executable binary program, that for example
reads an input file, the technique consists in performing the following procedure.
First, the program is executed on an initial file obtaining a trace of executed
instructions; second, the trace is used to generate a new input file; and finally,
the previous two steps are iteratively applied using the new file as input. Such
a procedure can continue running until a termination criterion is reached, for
example a timeout or a user interruption. The process of input generation usu-
ally relies on symbolic execution and constraint solving, which we briefly explain
as follows. A program trace consists of instructions executed by the processor.
Among these instructions are conditional ones such as ”jump if equal”. Condi-
tional instructions have two possible outcomes or branches. For each conditional
instruction that occurs in a trace, one of the branches must have been taken.



Given a trace and a conditional instruction, we are interested in generating a new
input that causes the program to take the other untaken branch of the instruc-
tion. For that, symbolic execution help us generate the constraint on the input
that could potentially achieve this. Symbolic execution maps the input bytes
to symbolic variables and then emulates the execution of the trace instruction
while tracking these variables. During the simulation, the symbolic variables are
assigned expressions reflecting the effect of the instructions. When a conditional
instruction is reached, a constraint is generated by substituting, in the condi-
tion, the variables in scope by their corresponding expressions. Within a trace,
the conjunction of all the branch instruction constraints defines what often is
referred to as the path condition. For our goal, we only need to stop at the branch
instruction of interest The constraint is then fed to a constraint solver, which
delivers the desired input.

In academia the technique is sometimes referred to as white-box fuzzing [12].
Compared to black-box fuzzing, used by, for example, AFL [23] and Sulley [22]
where the program input is randomly generated, the technique is guaranteed to
achieve better code coverage and thus is more likely to find bugs. Think of a
program that first tests if the input is equal to a certain value and just exits
otherwise. With black-box fuzzing it is more likely that we never pass the test but
with this technique we will be able to generate an input that passes the test after
the first iteration. The drawback is that white-box fuzzing is slower. Nevertheless
the technique will always benefit from the continuous increase in efficiency and
speed of SAT solving [2] which is the underlying key procedure in constraint
solving and symbolic execution. Currently, there are several academic [8], [5] and
industrial [11] frameworks implementing the technique and efficiently used to test
industrial applications. In particular, for security testing the technique is used to
detect vulnerabilities by generating input that can cause the program to crash,
or that can allow for hijacking the execution, etc [7]. Other use-cases involve
back-door detection and malware analysis for detecting unwanted functionality
and behavior in binaries [13].

One of the challenges that we identified in this approach is the following.
Given an execution trace, how to best select the branch instruction, i.e., the
conditional instruction for which to trigger the other branch. The problem is that
there is no well-defined generic technique for such selection strategies. Existing
frameworks differ greatly in their implementations. A systematic approach that
selects each branch in each encountered trace would work for small programs
with small input domain. In such cases the technique could potentially cover
all possible execution paths in a reasonable time. For real size applications like
compilers, or document processors such an approach is inefficient. One would
think of a strategy that spreads the search across the execution path and avoid
exploring already covered portions of code. This would require some sort of code
book-keeping. In some other cases one would possibly prefer a more focused
selection strategy (in a Depth-first search manner) for traces containing portions
of code for example from newly added or upgraded libraries.



One other challenge is the following. In parallel settings where several ex-
ecution traces can be obtained simultaneously, how to best select the trace to
consider first. One good measure for selection relies on how many new blocks are
visited by the trace. In other terms, one can measure the amount of new program
code in the trace compared to the previous traces processed earlier and use that
as a ranking measure. There is no clear method on how to effectively implement
such method. Obviously, one wants to avoid comparing each new trace with each
of the old traces as this is extremely inefficient.

Related Work In [16] a technique is described for keeping track of execution
traces. The technique is based on recording an execution history for each trace.
An execution history records all executed instructions and their occurrences.
This is a standard data structure used for program slicing techniques. The choice
of this structure is for handling symbolic execution rather than for branch (or
path) selection strategy. For branch selection, [16] relies on a critical path ori-
ented strategy which is mainly based on choosing instructions that follow the
input data (tainted) propagation.

In [12] a technique called Generational search is proposed for branch selection.
The technique is based on classifying the generated program inputs according to
their generation level. The initial input has level 0. The inputs generated during
the ith iteration of the framework have level i + 1. Given an execution trace
obtained by running the program on an i level input, the branch conditions that
are selected are the ones that appear in ith position and upwards in the trace.
MergePoint [3] is a system which utilizes this strategy by initiating the sym-
bolic execution using a concrete input seed and explore paths using generational
search. It adds an additional step in the symbolic execution denoted as path
merging in order to reduce the number of explored paths.

Haller et al. introduce yet another search heuristic, denoted as Value Cov-
erage Search (VCS) [13], [14]. This strategy identifies potentially vulnerable
code regions using static analysis, and then steer the symbolic execution along
branches that are probable to lead to those regions. Code regions are deemed po-
tentially vulnerable if they change pointer values. The authors argue that their
strategy is superior to other traditional strategies, such as Depth-first search
which can also be infeasible to use when the symbolic input size increases. In [14],
the strategy is based on weights from a learning phase which are used to steer its
symbolic execution toward new and interesting pointer dereferences. During the
learning phase each branch is assigned a weight approximating the probability
that the path following the direction contains new pointer dereferences.

In Driller [21], a guided fuzzer is described for vulnerability detection. When-
ever the fuzzer is stuck and is unable to find new paths through a program, a
concolic execution engine is invoked. The engine uses the traces from the fuzzing
to identify new input that diverge into new code. When encountering conditional
branches, the tool checks if negating the condition would result in execution of
undiscovered code. A similar approach is also used in [10], named directed search.
There is no mentioning of how to select branch instructions given a trace con-
taining several instructions.



The technique closest to ours is described in [6] where a server is used in
order to decide which branch instruction to select. The server uses a heuristic to
pick the best instruction. One of the heuristic is based on picking the instruction
that were executed the fewest number of times. It is also mentioned that the
server can be configured for different heuristics. However there is no description
on how this is implemented. A project which both builds and refines upon [6],
is the symbolic execution tool KLEE [5]. When encountering branch conditions,
KLEE forks a process for each possible path. Each process executes a single
instruction within its context. For the case where there are multiple concurrent
processes at the same instruction step, a process scheduling algorithm is used to
decide which one to execute next.

S2E [8], a platform for selective symbolic execution, includes basic selection
strategy such as random, Depth- and Breadth-first strategies and mentions that
there is support for other strategies. However, these additional ones are not
described. Other projects which support Depth- and/or Breadth-first strategies
include [15] and [19]. In [7], [18] and [20] the focus is on performance of symbolic
execution and applications for discovering vulnerabilities rather than selection
strategies.

Compared to the other methods, ours is agnostic to the other steps of the
testing framework, i.e., how the new inputs are generated or how the program
is run. When it comes to trace prioritization, most of the related work does
not address the issue, with some exceptions. In [12], [6], a code-coverage-block
method is used for ranking the traces. In particular, in [12], this measure is used
for giving scores to the generated program inputs. The rank of a trace (or the
corresponding input) is based on the number of unexplored code blocks that
appear in the trace compared to all other encountered traces. In [5] the process
scheduling depends on interleaving two strategies, randomly selecting paths at
branch conditions and selecting processes which are most likely to reach new
code. The latter apply a combination of the minimum distance to uncovered
instructions, and whether the process has recently discovered new code.

Contribution We present OpenSAW, an open, flexible and scalable framework
for dynamic test generation. The framework leverages already available tools
like constraint solvers and trace extractors, and implements two new methods
to solve the issue of branch selection and trace prioritization. More precisely,
the framework provides a method that allows customization of the strategies in
a flexible manner. The method keeps track of the generated execution traces
by storing them in a special directed graph structure, the trace graph. In this
graph, each node represents a portion of the program code ending in a (possibly
conditional) jump instruction. Each edge represents a trace and the relative
position of the target node in the trace. We generalize branch selection strategies
to functions over trace graphs. Furthermore, the framework delivers a method
for ranking of the traces, that is fully integrated with the trace graph updating
procedure. The resulting rank value can be used to prioritize the execution traces
for parallelization purposes.



Outline The next section gives an overview of the framework. Section 3 describes
in details the trace graph concept. Section 4 lists some of the features of Open-
SAW. Section 5 presents some of our experiments with the framework. Finally,
Section 6 concludes the article with some future work.

2 Overview of the Framework

2.1 Preliminaries

For a sequence s, we use |s| to denote its length, and s[i] to denote its ith element
for all 1 ≤ i ≤ |s|. We let s[i] be ⊥ for all i > |s|. Given two sequences s, s′, we use
s v s′ to denote that s is a subsequence of s′. A program input is a sequence of
bytes and a trace is a sequence of binary (or assembly) instructions corresponding
to a run of the program on a particular input. We will be only working with finite
inputs, and we assume that programs are deterministic and that they do always
terminate. We let i and t range respectively over program inputs and traces.
Given a program p, for an input i, we denote by tr(p, i) the trace obtained by
running p on i. We use I and T to denote respectively the set of all possible
inputs and traces. For a trace t, we denote by in(p, t) := {i ∈ I|tr(p, i) = t}, i.e.
the set of all inputs on which p generates t. Sometimes we omit p, and write
tr(i) or in(t) whenever the program is clear from the context.

In general a framework such as ours generates new inputs based on the con-
ditional branch instructions in the program traces. For that, we adopt a less
granular definition for traces and let a trace be a sequence of instruction blocks
or blocks for short. Given a trace t, a block is a maximum length subsequence
of consecutive instructions containing no branch instructions except maybe in
the last position. Observe that this definition is similar to basic blocks in the
context of Control Flow Graphs (CFG). The main difference being that blocks
may have multiple entry points. As we are dealing with individual traces, it is
not possible to know in advance how many entry points a block has. Following
our definition, in a trace t, any conditional branch instruction will be at the end
of a unique block from t. We will use B to denote the set of all possible blocks.

Let’s fix a program p. Given an input i, the corresponding trace t = tr(i)
and a block of interest b ∈ t, the framework performs a series of operations in
order to generate a new input that can potentially trigger the other branch of b.
More precisely, the framework first performs symbolic execution on t up-to the
instruction of interest in order to generate a path condition. A path condition is
a conjunction of formulas on symbols corresponding to the bytes of in(t). Each
such formula represents the condition on the taken branch of one of the encoun-
tered conditional instructions in t up-to and including the one in b. Second, the
framework generates a new path condition by negating the formula correspond-
ing to the branch of interest. Afterwards, the framework queries a constraint
solver for a possible solution. In case a solution is found, the framework uses it
in order to finally construct a new input based on the previous input i. We will
hide and collapse all theses steps into a single function gen(t, b) whose co-domain
is in I ∪ {⊥}.



2.2 Architecture

During the development of OpenSAW, the main focus was on flexibility and
performance. For flexibility, the goal is that the framework should be as agnostic
as possible to the underlying used tools such as for symbolic execution, constraint
solving. For performance, the aim is that it should be able to distribute and
parallelize the tasks so that it benefits as much as possible from the available
computational resources. As a result, the framework architecture is as illustrated
in Fig. 1 and its main procedure in Alg. 1.

Fig. 1. OpenSAW’s architecture

The framework relies on two procedures that can be run in parallel, namely
the extractTrace and the generateInputs procedures defined in Alg. 1.
The modules feed each other with tasks through two different priority queues:
an input queue and a trace task queue denoted respectively by inpQ and trQ in
Alg. 1 (l.1). A trace task is a tuple (t, b) where t is a trace and b is a sequence
of blocks from t.

The extractTrace procedure (l.5-13) reads program inputs from an input
queue. For each read input i, the procedure first generates the corresponding
trace tr(i). From the resulting trace, it then computes a priority r ∈ N and
selects a number of blocks arranged in a sequence b. Finally, the resulting trace
task (t, b) is pushed onto an output queue with priority r. The generateInputs
procedure (l.14-25) reads trace task from an input queue. For each obtained task
of the form (t, b), the procedures loops through each element in the sequence b[j]
for 1 ≤ j ≤ |b| and attempts to generate an input i triggering the untaken
branch, i.e., i′ = gen(t, b[j]). The set iDB is used to keep track of produced
inputs that are discarded whenever they are generated again. In case the input
i′ is both valid and new, it is pushed onto an output queue. For now, we assume
that the returned values of the getPriority (l.9) and selectBranches (l.10)
functions are computed by an oracle.

For each task that is read, whether it is an input or a trace task, the processing
steps can be in fact delegated to worker subprocesses. and hence the nesting
representation in Fig. 1. Observe, that the priorities can be rendered useless in
case there is no queue buildup. Nevertheless, one can think of a scheme where
the priority computation is activated or deactivated depending on the queue size.
This and similar implementation details are further discussed in Section 4.



Algorithm 1 OpenSAW’s main algorithm

Input: A program p and an initial input i0
1: (iDB, inpQ, trQ)← (∅, ∅, ∅)
2: push i0 in inpQ
3: extractTrace(p, inpQ, trQ) . Lines 3-4 are executed in parallel
4: generateInputs(iDB, trQ, inpQ)
5: procedure extractTrace(p: program, inQ, outQ: queue)
6: while true do
7: pop inQ in i . blocking
8: t← tr(p, i)
9: r ← getPriority(t)

10: b← selectBranches(t)
11: push (t, b) in outQ with priority r
12: end while
13: end procedure
14: procedure generateInputs(iDB: set, inQ, outQ: queue)
15: while true do
16: pop inQ in (t, b) . blocking
17: for j = 1 . . . |b| do
18: i← gen(t, b[j])
19: if i 6=⊥ ∧ i /∈ iDB then
20: add i to iDB
21: push i in outQ
22: end if
23: end for
24: end while
25: end procedure

3 Trace Graphs

3.1 Selection Strategies

One of the central features in such frameworks is the branch selection opera-
tion performed, in our case, by the selectBranches function in Alg. 1. The
selection can be done randomly, or by a heuristic [12], [6], [14], or based on a
graph search algorithm such as Breadth-first or Depth-first search. Furthermore,
some kind of book-keeping must be performed, for example, in order to avoid
repeatedly processing the branch instructions from the same trace. Overall, a
strategy is needed. Obviously, the choice of the strategy has a direct impact on
the performance of the framework.

In order to define strategies in general, two aspects are taken into consider-
ation. On the one hand, a strategy itself should be easy to change and hence
our choice to refactor it out and delegate to an abstract function with a specific
interface (selectBranches) unlike for example how it is handled in the SAGE
framework. On the other hand, our framework must provide support for a class
of strategies as large as possible or at least that subsumes all the ones used in
similar frameworks including for example the generational search strategy used



in SAGE. Observe that it is difficult to know what the most general and common
prerequisites of a selection strategy are. Nevertheless, the current history during
a run of the framework provides a good basis for a generic selection strategy.

3.2 Run Data

By history, we mean all the data generated during the run such as the program
inputs, the computed priorities, the selected branches but most importantly the
program traces. In fact, even for small applications, the number and length of the
encountered traces may quickly grow into an unmanageable number. Therefore
a new structure is needed to efficiently represent the set of generated traces.

Definition 1. A trace graph G is a tuple (N,E,wit) where N ⊆ B is a set of
nodes, E ⊆ N×N is a set of edges, and wit : E → T ×N is a function called the
witness function mapping to each edge a pair consisting of a trace and a block
index. In addition, the witness function wit is such that for each e = (b, b′) ∈ E,
t ∈ T and j ∈ N where wit(e) = (t, j), it holds that t[j − 1] = b and t[j] = b′.

Intuitively, a trace graph can be used to represent a set of execution traces
obtained so far during a run, like a snapshot of the run. In this structure, each
block is uniquely represented by a node. An edge is used as a witness (wit) of
the trace and corresponding position where the block, represented by the edge
target node, has occurred. More precisely, given a set of traces T ⊆ T , a good
representative trace graph must account for at least each block in T . This can
be fulfilled by choosing the set of nodes to include the set of all blocks from the
traces in T , and the set of edges to account for all pairs of blocks that occur
consecutively in a trace from T . Observe that for the witness function there may
be different traces that fulfill the condition of Def. 1, for example in case the
traces overlap. Now the question is which trace to use in the function definition.
To handle this, we assume that we are given a total order on the set T .

Definition 2. For a set of traces T ⊆ T equipped with a total order �, the
induced trace graph of T with respect to � denoted by G(T ) is the trace graph
(N,E,wit) where:

– N := {b ∈ B|∃t ∈ T : b ∈ t},
– E := {(b, b′) ∈ B × B|∃t ∈ T : bb′ v t}, and
– ∀e = (b, b′) ∈ E, wit(e) := (t, j) where t := min{t′ ∈ T |bb′ v t′} (w.r.t. �)

and j := min{1 ≤ k < |t||t[k] = b ∧ t[k + 1] = b′}.

Think of a total order on a set of traces as a way of arranging the traces in
a specific sequence so that the witness function can be uniquely defined in the
induced trace graph. If the traces are rearranged, for example by changing the
order in which the inputs are fed to the program, the set of nodes and edges in
the induced graphs are not affected. The trace order change only affects the wit-
ness function. In particular, rearranging overlapping traces changes the witness
function value for the edges in scope of that overlap. This is since by definition



only the minimal trace, w.r.t. the global ordering, is used in the witness function
definition a witness as captured in the following proposition.

This is relevant because it shows that the data structure captures the notion
of what has happened, but is not bogged down by details about in which order
they happened. Specifically, it allows strategies to be defined in terms of what
has happened and what is possible, which seems more meaningful compared to in
which order the information was collected. The following proposition formalizes
the notion.

Proposition 1. For a set of traces T ⊆ T and two total orders �1 and �2 on
T , the induced graphs of T , G1 and G2 w.r.t. �1 and �2 are equal up-to an
order automorphism.

This property is useful for a distributed framework such ours, since regardless
of which framework settings are used to analyze a program, the resulting trace
graph is canonical in the sense of the previous proposition.

The order in our framework is that in which the traces are generated and
we let � denote this order in the remainder of the section. Later on we will
describe how graphs induced by this order can be used to define different selection
strategies. What remains to do now is to devise an efficient method to construct
such graphs incrementally so that it can be integrated in our framework.

3.3 Graph Construction

Assume a set of traces T ⊆ T and the induced trace graph G(T ) := (N,E,wit).
Given a trace t, Alg. 2 computes the graph induced by T ′ := T ∪ {t} where it
is assumed that t is newly generated, i.e., t is a maximal element w.r.t. � in T ′.
The resulting trace graph is denoted by G′ := (N ′, E′, wit′).

Algorithm 2 Trace graph update algorithm

Input: A trace graph G := (N,E,wit) induced by some set of traces T ⊆ T and a
newly generated trace t

Output: The trace graph induced by T ∪ {t}
1: (n,N ′, E′, wit′)← (⊥, N,E,wit)
2: for j = 1 . . . |t| do
3: if t[j] /∈ N ′ then
4: add t[j] to N ′

5: end if
6: if n 6=⊥ ∧ (n, t[j]) /∈ E′ then
7: add e := (n, t[j]) to E
8: wit′(e)← (t, j)
9: end if

10: n← t[j]
11: end for
12: return G′ := (N ′, E′, wit′)



Initially, G′ is defined by copying the input graph G. The main loop of the
algorithm iterates through the instruction blocks of the input trace t in their
sequence order. The variable n, which is initially undefined, is used in the loop
to keep track of the previous taint block in t. In each iteration j of the loop,
first the block t[j] is checked against the set N ′ and possibly added to it (l.3-5).
Then, the edge e := (n, t[j]) is checked against the set E′ and possibly added
to it as well. In particular, when the edge e is added, then the function wit′ is
defined at e to be (t, j) (l.6-9). The algorithm has a linear time complexity in
the length of the input trace O(|t|).

Proposition 2. Given a set of traces T ⊆ T , the induced G(T ), and a trace t
such that t is the maximal element w.r.t. � of the set T ∪ {t}, Alg. 2 computes
G(T ∪ t) w.r.t �.

3.4 Task Priorities

Another feature in the framework is the priority computation performed by the
getPriority function in Alg. 1. A common measure is usually based on the
number of new instructions not encountered in previously processed traces. In
our case, we adopt a similar approach based on the trace graph structure.

Given a set of traces T ⊆ T and a trace t ∈ T , we define first two basic
measures on t w.r.t. to T which we will later combine to define the main measure
used in our framework. First, we define nd(t, T ) by:

nd(t, t′) := |{b ∈ t|6 ∃t′ ∈ T : b ∈ t′}|.

Intuitively, nd counts the number of blocks occurring only in t. Second, we let
ed(t, T ) denote the following:

ed(t, T ) := |{j|∃t.t[j] ∈ T ∧ ∀t′ ∈ T.t′ 6= t : t′[j] 6= t[j]}|.

This measure counts the number of new positions in which some of the blocks in
the traces from T , occur in t. We are now ready to define the measure we used.

Definition 3. Given a set of traces T ⊆ T and a trace t, the rank of t w.r.t. T
denoted by rk(t, T ) is defined by

rk(t, T ) := nd(t, T ) + ed(t, T ).

Although, the computation of the rank can be fully integrated in the trace graph
update algorithm, we choose to keep it separate in Alg. 3 for clarity of the
presentation. In this algorithm, the variables nd and ed are used to compute the
measures nd(t, T ) and ed(t, traces) respectively. The main loop iterates through
the blocks of the input trace in their sequence order. The loop code block can
be divided into two parts where in the first part (l.3-5) nd is updated and in the
second one (l.6-15). Like in Alg. 2, the variable n is used to keep track of the
previous taint block in t.



Algorithm 3 Rank computation algorithm

Input: A trace graph G := (N,E,wit) induced by some set of traces T ⊆ T and a
newly generated trace t

Output: The rank of t w.r.t. T
1: (n, nd, ed)← (⊥, 0, 0)
2: for j = 1 . . . |t| do
3: if t[j] /∈ N then
4: nd← nd + 1
5: end if
6: if n =⊥ ∨ (n, t[j]) /∈ E then
7: v ← 1
8: for e ∈ E where wit(e) := (t′, k) do
9: if k = j ∧ t′[k] = t[j] then

10: v ← 0
11: break
12: end if
13: end for
14: ed← ed + v
15: end if
16: n← t[j]
17: end for
18: return nd + ed

In each iteration j of the loop, first the taint block t[j] is checked against the
set n and nd is updated accordingly. Then, each edge e ∈ E, where wit := (t′, k)
for some trace t′ ∈ t and k ∈ N, is considered in order to check whether the
current taint block t[j] already occurs in the same position (k = j) in some
other trace t′ from T . In case it does not, then the increment variable v is not
reset and ed is updated accordingly.

Proposition 3. Given a set of traces T ⊆ T , the induced G(T ), and a trace
t ∈ T , Alg. 3 computes rk(t, T ).

4 Framework Features

We highlight some of the main features of OpenSAW including the choice of
the underlying tools, the support for user-defined branch selection strategies,
and the progress visualization web interface. An implicit feature is the choice
of implementation language. OpenSAW is implemented in Python, a popular
programming language. Hopefully, this will make it easier for users to write their
own modules and extend the framework.

4.1 Choice of the Underlying Tools

OpenSAW uses a modular execution engine that is responsible for extracting
execution traces and generating new inputs. The interface between this engine



and OpenSAW itself is generic enough so that it is easy to plug-in other engines.
The engine currently supported in OpenSAW uses Intel’s PIN [17] in combina-
tion with BAP [4]. For symbolic execution OpenSAW relies on BAP’s iltrans
tool. For constraint solving STP [9] is used.

4.2 User-Defined Strategies

Strategies are central in OpenSAW. They allow the user to steer the exploration
of the executable. Strategies could be generic and based on common graph search
algorithms. They could also be program specific and based for example on in-
struction addresses. OpenSAW’s strategies enable users to control both the
order in which tasks are handled and which branches of a trace to examine.

OpenSAW comes with some built-in strategies and offers support for user-
defined ones. The built-in strategies include basic operations. For example, op-
erations for handling redundancies by skipping analyzed branches, trying to
improve coverage by only analyzing branches if they have exits that have never
been taken, and trying to avoid loops by only analyzing each branch once per
trace are included. They also cover graph search based ones such as Depth-first,
Breadth-first and Generational search. In addition, OpenSAW has two built-in
meta strategies for sequential and parallel composition of strategies. A sequen-
tial strategy chains the effect of its operand strategies while a parallel strategy
rotates among them. The command line interface allows the user to choose and
compose freely the built-in strategies.

In general, all the strategies in OpenSAW are derived from an abstract
superclass with several callback methods. This superclass defines the strategy
interface in OpenSAW. The callbacks offer hooks in the framework that are
useful during the run. Each callback method is bound to a particular event so
that it is only called when the corresponding event takes place. For example,
there is a callback method for the generation of a new input, the extraction of a
new trace, the failure of the constraint solver on a particular branch, etc. Users
can extend the framework with other strategies as long as they implement the
interface.

4.3 Progress Visualization

OpenSAW is shipped with a web interface for progress visualization and shown
in the figures below. Figure 2 corresponds to the trace graph view. This view is
animated so that the user can see the effect of the trace graph updates during
the framework run. Figure 3 shows the statistics view. Among the component in
this view is the pie graph illustrating how much of the overall runtime each of the
underlying tool accounts for. Other components in this view include the number
and type of crashes and a chart illustrating the number of visited branches over
time.



Fig. 2. OpenSAW features a trace
graph view that visualizes the gener-
ation of the trace graph

Fig. 3. OpenSAW features a statis-
tics view that, for example, contains a
graph of visited branches over time

5 Experiments

We have tested OpenSAW on the binaries used in DARPAS Cyber Grand Chal-
lenge (CGC) Qualification round [1]. CGC was a challenge developed to test the
ability of cyber reasoning systems to find, prove and patch vulnerabilities in
programs. We chose this test set because the programs are complex, contain
vulnerabilities based on real-world-bugs and are written by people with different
background and skill. Additionally we have evaluated OpenSAW on a codec used
in production. By comparison to the CGC tests, the codec is much larger, runs
on a real Linux system and requires inputs of much larger size.

5.1 DARPA CGC

The DARPA CGC qualification round consisted of 131 vulnerable binaries. These
binaries run on a system called DECREE (DARPA Experimental Cyber Re-
search Evaluation Environment) This is a system built on Linux but with only
seven different syscalls. These allow I/O, memory allocation, randomness and
program termination. This limitation leads to a small and well defined environ-
ment, which allows developers of analysis tools to focus on the analysis and not
on the internals and quirks of the complete set of Linux syscalls.

We were able to execute OpenSAW on 126 of the 131 CGC binaries. Five bi-
naries were omitted because they use inter-process communication and currently
OpenSAW can only analyze one binary at a time. We let OpenSAW execute
with the generational search strategy for 30 minutes per binary. If OpenSAW



had not exhaustively searched the input space of the binary within this time
we aborted the search and continued with the next binary. For each binary the
initial input consisted of the same 10kB random data. The size of this intial
input was chosen with the assumption that all binaries could be crashed with
some input of this size.

The testing was done in a virtual machine running on a four core i7-4800 MQ
CPU with 2.70GHz and support for eight threads. The host machine only ran
the virtual machine and assigned 15Gb of memory and four cores to it. Using
this setup, OpenSAW found seven reproducible crashes that were not caused
by the initial input.

5.2 Production Code

We also tested OpenSAW on a codec used in production. In contrast to the CGC
binaries, the source code of the codec has 200k lines. In addition it requires
inputs of sizes between 0.5-120kB to achieve high coverage of the code. The
codec consists of two binaries: an encoder and a decoder. The initial input files
for the encoder and the decoder were valid inputs of 46kB and 120kB in size
respectively. It is worth noting that the codec had already been tested internally
with AFL and presumably also by external users. As AFL was already in use
internally we have compared OpenSAW with AFL. The tools are also similar as
they both handle programs that use a single file as input and also in that neither
requires any modification of the tested program or any additional wrapper code.

We ran two instances of OpenSAW simultaneously during 96h, one on the
encoder and the other one on the decoder on the same system setup as DARPA
CGC. We also ran AFL on the codec for the same amount of time, on the
same system setup, with multi-threaded AFL running for both the encoder and
decoder. The result of these runs can be seen in Table 1.

The inputs generated by AFL did not identify any bugs. This is probably due
to the fact that all the bugs revealed earlier by AFL have been already corrected
in the version we were testing.

OpenSAW generated a bug finding input after 40 hours. This bug was iden-
tified by executing the generated inputs on the codec with additional error de-
tection in place. In comparison with AFL, OpenSAW also achieved better code
coverage with fewer test cases.

Inputs Bugs found Function coverage in % Line coverage in %

AFL 42 775 0 61.0 51.0

OpenSAW 464 1 66.5 53.3

Table 1. Results of running OpenSAW and AFL for 96h each on the codec.



6 Conclusion

Summary We have presented OpenSAW, a new framework for white-box fuzzing.
OpenSAWstrives to be open, flexible and agnostic to the underlying tools and
techniques such as for symbolic execution, trace analysis and constraint solving.
In fact, it could be used as a test platform for experimenting with such tools. We
have addressed the issue of branch selection. For that purpose, we have defined
the trace graph structure and generalized the concept of selection strategies to
functions over trace graphs. This is one of the central features in OpenSAW
which offers a large catalog of built-in strategies and support for user-defined
ones. OpenSAW aims to be a flexible and efficient testing tool that can be
scaled in or scaled out depending on the available computation power. In order
to achieve this particular goal, we have addressed the issue of task prioritization
and devised an efficient trace ranking algorithm fully integrated with the trace
graph update procedure. We have tested OpenSAW successfully on an external
benchmark and on an internal production code. In particular, the analysis of
the production code did discover a new bug not revealed earlier by the testing
process in place.

Future Work There is potential for many research directions with OpenSAW. In
terms of use cases, it could be interesting to use strategies that steer the search
towards specific parts of the program binary. This would be a useful feature
for example for restricting the testing during upgrades. In relation to strategies,
another interesting direction could be to use machine learning to define good
strategies. This could be based on observing the program behavior during normal
operations and then developing a strategy that focuses the search along less
common paths. Another example could be based on analyzing a large data set
of OpenSAW runs over similar types of programs in order to identify crash
patterns. In terms of extensions, it could be worth looking into how to integrate
static analysis in the framework to further tune the search. For example, what
would be the benefit when starting from an approximate CFG provided by a
static analyzer. If used properly, such information could potentially reduce the
size of the trace graph and make the search converge faster.

Reflections Our industry is extremely heterogeneous in terms of software and
hardware platforms. OpenSAW will always benefit from advances in symbolic
execution techniques addressing for example the support of multi-threading and
floating point computation. OpenSAW is good for testing in some niches and
has proven to be a useful complement to the testing process for at least one.
Therefore, this will only drive forward our quest in promoting and developing
such technology.
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